Improved Planning for Infinite-Horizon Interactive POMDPs using Probabilistic Inference (Extended Abstract)
نویسندگان
چکیده
We provide the first formalization of self-interested multiagent planning using expectation-maximization (EM). Our formalization in the context of infinite-horizon and finitely-nested interactivePOMDP (I-POMDP) is distinct from EM formulations for POMDPs and other multiagent planning frameworks. Specific to I-POMDPs, we exploit the graphical model structure and present a new approach based on block-coordinate descent for further speed up.
منابع مشابه
Individual Planning in Infinite-Horizon Multiagent Settings: Inference, Structure and Scalability
This paper provides the first formalization of self-interested planning in multiagent settings using expectation-maximization (EM). Our formalization in the context of infinite-horizon and finitely-nested interactive POMDPs (I-POMDP) is distinct from EM formulations for POMDPs and cooperative multiagent planning frameworks. We exploit the graphical model structure specific to I-POMDPs, and pres...
متن کاملMessage-passing algorithms for large structured decentralized POMDPs
Decentralized POMDPs provide a rigorous framework for multi-agent decision-theoretic planning. However, their high complexity has limited scalability. In this work, we present a promising new class of algorithms based on probabilistic inference for infinite-horizon ND-POMDPs—a restricted Dec-POMDP model. We first transform the policy optimization problem to that of likelihood maximization in a ...
متن کاملOn the Computability of Infinite-Horizon Partially Observable Markov Decision Processes
We investigate the computability of infinite-horizon partially observable Markov decision processes under discounted and undiscounted optimality criteria. The undecidability of the emptiness problem for probabilistic finite automata is used to show that a few technical problems, such as the isolation of a threshold, and closely related undiscounted problems such as probabilistic planning are un...
متن کاملAnytime Planning for Decentralized POMDPs using Expectation Maximization
Decentralized POMDPs provide an expressive framework for multi-agent sequential decision making. While finite-horizon DECPOMDPs have enjoyed significant success, progress remains slow for the infinite-horizon case mainly due to the inherent complexity of optimizing stochastic controllers representing agent policies. We present a promising new class of algorithms for the infinite-horizon case, w...
متن کاملEfficient Planning for Factored Infinite-Horizon DEC-POMDPs
Decentralized partially observable Markov decision processes (DEC-POMDPs) are used to plan policies for multiple agents that must maximize a joint reward function but do not communicate with each other. The agents act under uncertainty about each other and the environment. This planning task arises in optimization of wireless networks, and other scenarios where communication between agents is r...
متن کامل