Reinforcement Learning of Active Recognition Behaviors

نویسنده

  • T. Darrell
چکیده

We show how a concise representation of active recognition behavior– what observations to make to detect a given object– can be derived from hidden-state reinforcement learning techniques. These learning techniques can solve decision process tasks which include perceptual observations, defined formally as Partially Observable Markov Decision Processes (POMDP). We define recognition within a POMDP context, with an action indicating recognition of the target as well as actions for adjusting the perceptual apparatus or other effectors. An explicit supervised reward signal is provided to the decision process whenever the accept action is performed. With sufficient experience, a memory-based approach to reinforcement learning can find optimal policies which discriminate target from distractor patterns despite considerable perceptual aliasing at any given instant. To avoid perceptual aliasing while learning, all similar experiences are combined when computing the utility of a possible action, including experiences with both target and distractor patterns. By discarding the representation of negative regions of the utility space when learning is complete, and collapsing duplicate representations of positive regions, a representation similar to an augmented Finite State Machine is obtained. We show application of our method for the task of recognizing human gesture performance that occurs at multiple spatial scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey of effective factors on learning motivation of clinical students and suggesting the appropriate methods for reinforcement the learning motivation from the viewpoints of nursing and midwifery faculty, Tabriz University of Medical Sciences 2002.

Introduction. Motives are the powerful force in process of education– learning, so that the richest and best training plans and structured education are not effective if the lack of motivation existed. In spite of the fact that the success of teacher depends on the learning motivation of students, then it is necessary for teachers to know the effective methods for motivating the students and t...

متن کامل

Learning how to Active Learn: A Deep Reinforcement Learning Approach

Active learning aims to select a small subset of data for annotation such that a classifier learned on the data is highly accurate. This is usually done using heuristic selection methods, however the effectiveness of such methods is limited and moreover, the performance of heuristics varies between datasets. To address these shortcomings, we introduce a novel formulation by reframing the active...

متن کامل

Reinforcement Learning-based Spoken Dialog Strategy Design for In-Vehicle Speaking Assistant

In this paper, the simulated annealing Q-learning (SA-Q) algorithm is adopted to automatically learn the optimal dialogue strategy of a spoken dialogue system. Several simulations and experiments considering different user behaviors and speech recognizer performance are conducted to verify the effectiveness of the SA-Q learning approach. Moreover, the automatically learned strategy is applied t...

متن کامل

The Effect of Electronical Media on the Reinforcement of Social Behavior of Youth from the Computer Course Professors and Students Viewpoints of Sari Islamic Azad University

The goal of research was the effect of electronical learning media on the reinforcement of youth social behavior from the point of view of computer course professors and students of Islamic Azad University of Sari. The statistical population was included of all computer students and professors of I.A.U of Sari. The statistical sample was identified by using of the sample content identification ...

متن کامل

Active gesture recognition using partially observable Markov decision processes

We present a foveated gesture recognition system that guides an active camera to foveate salient features based on a reinforcement learning paradigm. Using vision routines previously implemented for an interactive environment, we determine the spatial location of salient body parts of a user and guide an active camera to obtain images of gestures or expressions. A hiddenstate reinforcement lear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998