Paclitaxel-Induced Apoptosis Is BAK-Dependent, but BAX and BIM-Independent in Breast Tumor
نویسندگان
چکیده
Paclitaxel (Taxol)-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death) plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/-) MEFs (mouse embryonic fibroblasts), the bim(-/-) mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/-) MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/-) MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.
منابع مشابه
Cancer Therapy: Preclinical Phenylarsine Oxide Induces Apoptosis in Bax- and Bak-Deficient Cells through Upregulation of Bim
Purpose: Bax and Bak are regarded as key mediators for cytochrome c (Cyt c) release and apoptosis. Loss of Bax or Bak is often reported in human cancers and renders resistance of these cancerous cells to chemotherapy. Here, we investigated that phenylarsine oxide (PAO) could induce Bax/Bak-independent apoptosis. Experimental Design: Annexin V/propidium iodide (PI) staining, terminal deoxynucleo...
متن کاملApaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment.
Taxane derivatives such as paclitaxel elicit their antitumor effects at least in part by induction of apoptosis, but the underlying mechanisms are incompletely understood. Here, we used different cellular models with deficiencies in key regulators of apoptosis to elucidate the mechanism of paclitaxel-induced cell death. Apoptosis by paclitaxel was reported to depend on the activation of the ini...
متن کاملPhenylarsine oxide induces apoptosis in Bax and Bak deficient cells through upregulation of Bim Running title: PAO induces Bax/Bak-independent apoptosis
Purpose: Bax and Bak are regarded as key mediators for cytochrome c release and apoptosis. Loss of Bax or Bak is often reported in human cancers and renders resistance of these cancerous cells to chemotherapy. Here we investigated that phenylarsine oxide (PAO) could induce Bax/Bak-independent apoptosis. Experimental Design: Annexin V/PI staining, TUNEL staining and Caspase activation assays wer...
متن کاملThe BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their bindin...
متن کاملPhenylarsine oxide induces apoptosis in Bax- and Bak-deficient cells through upregulation of Bim.
PURPOSE Bax and Bak are regarded as key mediators for cytochrome c (Cyt c) release and apoptosis. Loss of Bax or Bak is often reported in human cancers and renders resistance of these cancerous cells to chemotherapy. Here, we investigated that phenylarsine oxide (PAO) could induce Bax/Bak-independent apoptosis. EXPERIMENTAL DESIGN Annexin V/propidium iodide (PI) staining, terminal deoxynucleo...
متن کامل