Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer.

نویسندگان

  • Emily J Guinn
  • Laurel M Pegram
  • Michael W Capp
  • Michelle N Pollock
  • M Thomas Record
چکیده

To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients K(p) for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. K(p) values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH--amide O and amide NH--amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or K(p) values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoprotection by glycine betaine and choline.

Glycine betaine is mostly known as an osmoprotectant. It is involved in the osmotic adaptation of eukaryotic and bacterial cells, and accumulates up to 1 M inside cells subjected to an osmotic upshock. Since, like other osmolytes, it can act as a protein stabilizer, its thermoprotectant properties were investigated. In vitro, like protein chaperones such as DnaK, glycine betaine and choline pro...

متن کامل

تاثیر اسید سالیسیلیک بر برخی صفات فیزیولوژیک گیاه خرفه (Portulaca oleracea L.) تحت تنش کلرید سیدم

In order to evaluate the effects of salicylic acid on some physiological characteristics of common purslane (Portulacea oleracea L.) under NaCl stress, a factorial experiment based on completely randomized design with three replications was conducted in 2013 in research greenhouse of Faculty of Agriculture, University of Yasouj, Iran. Treatments were included of six levels of NaCl salinity (0, ...

متن کامل

A molecular dynamics study

Aqueous solutions of the bioprotectant proline are simulated for solute molar fractions ranging from 2.0 · 10 3 to 2.3 · 10 . Statistical analyses show that proline affects the water structure more strongly than glycine betaine and trimethylamine-N-oxide, two of the most effective bioprotectants widely diffuse in nature, and as strongly as tert-butyl alcohol, a protein denaturant which at high ...

متن کامل

Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus.

In lithium-induced nephrogenic diabetes insipidus (NDI), alterations in renal medullary osmolyte concentrations have been assumed but never investigated. Amiloride can modify lithium-induced NDI, but the impact of amiloride in lithium-induced NDI on renal medullary osmolytes, aquaporins, and urea transporters is unknown and is the basis of this study. Rats fed lithium (60 mmol/kg dry food) over...

متن کامل

Testing the Ability of Non-Methylamine Osmolytes Present in Kidney Cells to Counteract the Deleterious Effects of Urea on Structure, Stability and Function of Proteins

Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also countera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 41  شماره 

صفحات  -

تاریخ انتشار 2011