Group Cost-sensitive Boosting with Multi-scale Decorrelated Filters for Pedestrian Detection
نویسندگان
چکیده
We propose a novel two-stage pedestrian detection framework that combines multiscale decorrelated filters to extract more discriminative features and a novel group costsensitive boosting algorithm. The proposed boosting algorithm is based on mixture loss to alleviate the influence of annotation errors in training data and explores varying cost for different types of misclassification. Experiments on Caltech and INRIA datasets show that the proposed framework achieves the best detection performance among all state-of-the-art non-deep learning methods. In addition, the proposed approach runs 88X faster than the best performing method from the widely-known Filtered Channel Feature framework.
منابع مشابه
Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching
Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two...
متن کاملBoosting algorithms for detector cascade learning
The problem of learning classifier cascades is considered. A new cascade boosting algorithm, fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive to support the design of high detec...
متن کاملLocal Decorrelation For Improved Pedestrian Detection
Even with the advent of more sophisticated, data-hungry methods, boosted decision trees remain extraordinarily successful for fast rigid object detection, achieving top accuracy on numerous datasets. While effective, most boosted detectors use decision trees with orthogonal (single feature) splits, and the topology of the resulting decision boundary may not be well matched to the natural topolo...
متن کاملMultiview Pedestrian Detection Based on Vector Boosting
In this paper, a multiview pedestrian detection method based on Vector Boosting algorithm is presented. The Extended Histograms of Oriented Gradients (EHOG) features are formed via dominant orientations in which gradient orientations are quantified into several angle scales that divide gradient orientation space into a number of dominant orientations. Blocks of combined rectangles with their do...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کامل