Lyapunov Stability of Quasilinear Implicit Dynamic Equations on Time Scales

نویسندگان

  • N. H. Du
  • N. C. Liem
  • C. J. Chyan
  • S. W. Lin
  • Ying Chuang
  • Stevo Stevic
چکیده

with A. being a given m × m-matrix function, has been an intensively discussed field in both theory and practice. This problem can be seen in many real problems, such as in electric circuits, chemical reactions, and vehicle systems. März in 1 has dealt with the question whether the zero-solution of 1.1 is asymptotically stable in the Lyapunov sense with f t, x′ t , x t Bx t g t, x′ t , x t , with A being constant and small perturbation g. Together with the theory of DAEs, there has been a great interest in singular difference equation SDE also referred to as descriptor systems, implicit difference equations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

Boundedness and Exponential Stability of Solutions to Dynamic Equations on Time Scales

Making use of the generalized time scales exponential function, we give a new definition for the exponential stability of solutions for dynamic equations on time scales. Employing Lyapunov-type functions on time scales, we investigate the boundedness and the exponential stability of solutions to first-order dynamic equations on time scales, and some sufficient conditions are obtained. Some exam...

متن کامل

Exponential Stability of Dynamic Equations on Time Scales

In this work we investigate the exponential stability of the zero solution to systems of dynamic equations on time scales. We define suitable Lyapunov-type functions and then formulate appropriate inequalities on these functions that guarantee that the zero solution decay to zero exponentially. Several examples are given.

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011