Silicon: its manifold roles in plants
نویسنده
چکیده
The title of this essay declares that silicon does have roles in plants and all participants in this conference know that that is so. This knowledge, however, is not shared by the general community of plant biologists, who largely ignore the element. This baffling contrast is based on two sets of experience. First, higher plants can grow to maturity in nutrient solutions formulated without silicon. That has led to the conventional wisdom that silicon is not an essential element, or nutrient, and thus can be disregarded. Second, the world’s plants do not grow in the benign environment of solution culture in plant biological research establishments. They grow in the field, under conditions that are often anything but benign. It is there, in the real world with its manifold stressful features, that the silicon status of plants can make a huge difference in their performance. The stresses that silicon alleviates range all the way from biotic, including diseases and pests, to abiotic such as gravity and metal toxicities. Silicon performs its functions in two ways: by the polymerization of silicic acid leading to the formation of solid amorphous, hydrated silica, and by being instrumental in the formation of organic defence compounds through alteration of gene expression. The silicon nutrition of plants is not only scientifically intriguing but also important in a world where more food will have to be wrung from a finite area of land, for that will put crops under stress.
منابع مشابه
Benefits of Silicon Nutrition on Growth, Physiological and Phytochemical Attributes of Basil upon Salinity Stress
In the present study, improvement of salt tolerance in basil (as a salt-sensitive plant) was investigated through silicon (Si) nutrition. Basil plants were subjected to silicon (0, 3 mM) and salinity (0, 50, 100, 150 and 200 mM NaCl) for a duration of one month. Salt stress significantly decreased the biomass of basil. Si supplement (3 mM) resulted in a considerable increase (averagely +135%) i...
متن کاملDistribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa
Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiff...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملSilicon and the Plant Extracellular Matrix
Silicon (Si) is one of the most abundant elements on earth. Although not considered essential for the growth and development of higher plants, it is nonetheless known to increase vigor and to play protective roles. Its protective effects include for instance alleviation of (a)biotic stress damages and heavy metal toxicity. Si was shown to interact with several components of the plant cell walls...
متن کاملمطالعه بر هم کنش سیلیکون و شوری بر برخی شاخصهای فیزیولوژیکی و تشریحی گیاه گاوزبان دارویی (Borago officinalis L.)
Nowadays medicinal plants are considered as important economical plants. Recently, due to the extension of saline lands, shortage of appropriate agricultural farms and economical value of medicinal plants. There is a growing interes of identifying salt tolerant medicinal plants. A cheap time saving and reliable way for selecting proper salt tolerant plants can be achieved by culturing these pla...
متن کامل