Orientation of the axial ligands and magnetic properties of the hemes in the cytochrome c7 family from Geobacter sulfurreducens determined by paramagnetic NMR.
نویسندگان
چکیده
Geobacter sulfurreducens is a sediment bacterium that contains a large number of multiheme cytochromes. The family of five c(7) triheme periplasmic cytochromes from Geobacter sulfurreducens shows structural diversity of the heme core. Structural characterization of the relative orientation of the axial ligands of these proteins by (13)C-paramagnetic NMR was carried out. The structures in solution were compared with those obtained by X-ray crystallography. For some hemes significant differences exist between the two methods such that orientation of the magnetic axes obtained from NMR data and the orientation taken from the X-ray coordinates differ. The results allowed the orientation of the magnetic axes to be defined confidently with respect to the heme frame in solution, a necessary step for the use of paramagnetic constraints to improve the complete solution structure of these proteins.
منابع مشابه
Analysis of the residual alignment of a paramagnetic multiheme cytochrome by NMR.
Residual dipolar couplings measured by NMR spectroscopy reveal that the rhombicity of the electronic structure of low-spin paramagnetic hemes determines their relative contribution to the preferential orientation of a protein with multiple hemes when placed in a strong magnetic field.
متن کاملDissecting the Functional Role of Key Residues in Triheme Cytochrome PpcA: A Path to Rational Design of G. sulfurreducens Strains with Enhanced Electron Transfer Capabilities
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested ...
متن کاملOn the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes.
Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different...
متن کاملComparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملGeobacter sulfurreducens Extracellular Multiheme Cytochrome PgcA Facilitates Respiration to Fe(III) Oxides But Not Electrodes
Extracellular cytochromes are hypothesized to facilitate the final steps of electron transfer between the outer membrane of the metal-reducing bacterium Geobacter sulfurreducens and solid-phase electron acceptors such as metal oxides and electrode surfaces during the course of respiration. The triheme c-type cytochrome PgcA exists in the extracellular space of G. sulfurreducens, and is one of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 47 شماره
صفحات -
تاریخ انتشار 2011