Self-Affine Tiles in Rn

نویسندگان

  • Jeffrey C. Lagarias
  • Yang Wang
چکیده

A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves several results about the structure of tilings of R possible using such tiles, and gives examples showing the possible relations between self-replicating tilings and general tilings, which clarify some results of Kenyon (1992) on self-replicating tilings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar - Type Multiwavelet Bases and Self - Affine Multi - Tiles

Abstract. Gröchenig and Madych showed that a Haar-type wavelet basis of L2(Rn) can be constructed from the characteristic function χΩ of a compact set Ω if and only if Ω is an integral self-affine tile of Lebesgue measure one. In this paper we generalize their result to the multiwavelet settings. We give a complete characterization of Haar-type scaling function vectors χΩ(x) := [χΩ1 (x), . . . ...

متن کامل

Expanding Polynomials and Connectedness of Self-Affine Tiles

Little is known about the connectedness of self-affine tiles inRn . In this note we consider this property on the self-affine tiles that are generated by consecutive collinear digit sets. By using an algebraic criterion, we call it the height reducing property, on expanding polynomials (i.e., all the roots have moduli > 1), we show that all such tiles in Rn, n ≤ 3, are connected. The problem is...

متن کامل

INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS

Let A be an expanding n n integer matrix with j det(A)j = m. A standard digit set D for A is any complete set of coset representatives for Z n =A(Z n). Associated to a given D is a set T(A; D), which is the attractor of an aane iterated function system, satisfying T = d2D (T + d). It is known that T(A; D) tiles R n by some subset of Z n. This paper proves that every standard digit set D gives a...

متن کامل

A Survey on Topological Properties of Tiles Related to Number Systems

In the present paper we give an overview of topological properties of self-affine tiles. After reviewing some basic results on self-affine tiles and their boundary we give criteria for their local connectivity and connectivity. Furthermore, we study the connectivity of the interior of a family of tiles associated to quadratic number systems and give results on their fundamental group. If a self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994