Coordinated multi-arm motion planning: Reaching for moving objects in the face of uncertainty

نویسندگان

  • Seyed Sina Mirrazavi Salehian
  • Nadia Figueroa
  • Aude Billard
چکیده

Coordinated control strategies for multi-robot systems are necessary for tasks that cannot be executed by a single robot. This encompasses tasks where the workspace of the robot is too small or where the load is too heavy for one robot to handle. Using multiple robots makes the task feasible by extending the workspace and/or increase the payload of the overall robotic system. In this paper, we consider two instances of such tasks: a co-worker scenario in which a human hands over a large object to a robot; intercepting a large flying object. The problem is made difficult as the pick-up/intercept motions must take place while the object is in motion and because the object’s motion is not deterministic. The challenge is then to adapt the motion of the robotic arms in coordination with one another and with the object. Determining the pick-up/intercept point is done by taking into account the workspace of the multi-arm system. The point is continuously recomputed to adapt to change in the object’s trajectory. We propose a virtual object based dynamical systems (DS) control law to generate autonomous and synchronized motions for a multi-arm robot system. We show theoretically that the multi-arm + virtual object system converges asymptotically to the moving object. We validate our approach on a dual-arm robotic system and demonstrate that it can resynchronize and adapt the motion of each arm in a fraction of a second, even when the motion of the object is fast and not accurately predictable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical System-Based Motion Planning for Multi-Arm Systems: Reaching for Moving Objects

The use of coordinated multi-arm robotic systems allows to preform manipulations of heavy or bulky objects that would otherwise be infeasible for a single-arm robot. This paper concisely introduces our work on coordinated multi-arm control [Salehian et al., 2016a], where we proposed a virtual object based dynamical systems (DS) control law to generate autonomous and synchronized motions for a m...

متن کامل

Planning Arm with 5 Degrees of Freedom for Moving Objects Based on Geometric Coordinates and Color

Skilled mechanical arms of consanguine relationship formed by joints the relative motion of the adjacent interfaces enable, have been connected. Ability to perform a variety of pre-programmed robotic manipulator in various industries. Skilled mechanical arms in recent years as a significant progress has been completed. House repair and easier to work with them as well and fit and optimal relati...

متن کامل

Batting an In-Flight Object to the Target

Striking a moving object such as a flying ball to a target location is a highly skillful maneuver that a human being has to learn through a great deal of practice. In robotic manipulation, precision batting remains one of the most challenging tasks in which computer vision, modeling, planning, control, and action must be tightly coordinated in a split second. This paper investigates the problem...

متن کامل

Planning Movements for Several Coordinated Vehicles in Traac Situation Planning Movements for Several Coordinated Vehicles in Traac Situation

| This paper describes the higher level of a system for controlling a set of non-holonomic vehicles moving in a dynamic environment|i.e. among static and moving objects|. This higher level is concerned with planning a trajectory for each vehicle whereas the execution of the plan is distributed at the level of each vehicle. The approach taken consists of assigning priorities to the vehicles, the...

متن کامل

Centralized Path Planning for Multi-aircraft in the Presence of Static and Moving Obstacles

This article proposes a new approach for centralized path planning of multiple aircraft in presence of the obstacle-laden environment under low flying rules. The problem considers as a unified nonlinear constraint optimization problem. The minimum time and control investigate as the cost functions and the maximum velocity and power consider as the constraints. The pseudospectral method applies ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016