Physiologically motivated image fusion for object detection using a pulse coupled neural network

نویسندگان

  • Randy P. Broussard
  • Steven K. Rogers
  • Mark E. Oxley
  • Gregory L. Tarr
چکیده

This paper presents the first physiologically motivated pulse coupled neural network (PCNN)-based image fusion network for object detection. Primate vision processing principles, such as expectation driven filtering, state dependent modulation, temporal synchronization, and multiple processing paths are applied to create a physiologically motivated image fusion network. PCNN's are used to fuse the results of several object detection techniques to improve object detection accuracy. Image processing techniques (wavelets, morphological, etc.) are used to extract target features and PCNN's are used to focus attention by segmenting and fusing the information. The object detection property of the resulting image fusion network is demonstrated on mammograms and Forward Looking Infrared Radar (FLIR) images. The network removed 94% of the false detections without removing any true detections in the FLIR images and removed 46% of the false detections while removing only 7% of the true detections in the mammograms. The model exceeded the accuracy obtained by any individual filtering methods or by logical ANDing the individual object detection technique results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

An Efficient Multi-Focus Image Fusion Scheme Based On PCNN

Optics of lenses with a high degree of magnification suffers from the problem of a limited depth of field. As the focal length and magnification of the lens increase, the depth of field decreases. As a result, it is often not possible to get an image that contains all relevant objects in focus. To overcome the problem of finite depth of field, image fusion technique is designed which combines t...

متن کامل

Image Fusion Algorithm Based on Contourlet Transform and PCNN for Detecting Obstacles in Forests

In this paper the image fusion algorithm based on Contourlet transform and Pulse Coupled Neural Network (PCNN) was proposed to improve the performance of the image fusion in the detection accuracy of obstacles in forests. At the same time, the wavelet transform and the Principal Component Analysis (PCA) were simulated for comparison with the proposed algorithm. Then visible and infrared thermal...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Quad-pixel edge detection using neural network

One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 1999