An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions

نویسندگان

  • Xiuhong Chen
  • Heli Wei
  • Ping Yang
  • Zhonghai Jin
  • Bryan A. Baum
چکیده

A computationally efficient method is developed to simulate the radiances in a scattering and absorbing atmosphere along an arbitrary path in the spectral region ranging from visible to far-infrared with a spectral resolution of 1 cm. For a given spectral region, the method is based on fitting radiances pre-calculated from the discrete ordinate radiative transfer (DISORT) at several wavenumbers. Radiances at other wavenumbers are interpolated based on the pre-computed total absorption and scattering optical thicknesses and the surface albedo. The computational efficiency and accuracy of the method are tested in comparison with rigorous simulations for various scenarios under the same conditions. For both clear-sky and cloud atmospheres, the present method is at least 140 times faster than the direct application of DISORT. Across the spectral range, the standard relative differences between the new method and the DISORT are less than 2% for clear-sky conditions. Root-mean-square (RMS) differences of the top of the atmosphere (TOA) brightness temperatures between the new method and DISORT, for atmospheric infrared sounder (AIRS) channels over clear-sky, ice cloudy and water cloudy skies, are within the noise equivalent differential temperature (NEDT) of the AIRS sensor. The fast method is also applied to simulations of the spectral downwelling radiance measured by the Fourier transform infrared (FTIR) interferometer, and to the simulations of the AIRS upwelling radiances under clear-sky and cloudy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHDOMPPDA: A Radiative Transfer Model for Cloudy Sky Data Assimilation

The spherical harmonics discrete ordinate method for plane-parallel data assimilation (SHDOMPPDA) model is an unpolarized plane-parallel radiative transfer forward model, with corresponding tangent linear and adjoint models, suitable for use in assimilating cloudy sky visible and infrared radiances. It is derived from the spherical harmonics discrete ordinate method plane-parallel (SHDOMPP, als...

متن کامل

Practical retrieval of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data.

A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of th...

متن کامل

Improvements and Applications of Atmospheric Soundings from Geostationary Platform

A unique feature of the Geostationary Operational Environmental Satellite (GOES) Sounder over the polar orbiting sounders is that it observes the atmosphere and the surface on an hourly basis with a nominal spatial resolution of 10 km. The temporally and spatially dense observations are of great importance for improving short-term weather forecasting or nowcasting. To further demonstrate how th...

متن کامل

On the angular effect of residual clouds and aerosols in clear-sky infrared window radiance observations: Sensitivity analyses

[1] Accurate environmental satellite observations and calculations of top-of-atmosphere infrared (IR) spectral radiances are required for the accurate retrieval of environmental data records (EDRs), including atmospheric vertical temperature and moisture profiles. For this reason it is important that systematic differences between observations and calculations under well-characterized condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010