On Quantum BCH Codes and Its Duals
نویسنده
چکیده
Classical Bose-Chaudhuri-Hocquenghem (BCH) codes C that contain their dual codes can be used to construct quantum stabilizer codes this chapter studies the properties of such codes. It had been shown that a BCH code of length n which contains its dual code satisfies the bound on weight of any non-zero codeword in C and converse is also true. One impressive difficulty in quantum communication and computation is to protect informationcarrying quantum states against undesired interactions with the environment. To address this difficulty, many good quantum errorcorrecting codes have been derived as binary stabilizer codes. We were able to shed more light on the structure of dual containing BCH codes. These results make it possible to determine the parameters of quantum BCH codes in terms of weight of non-zero dual codeword. Keywords—Quantum Codes, BCH Codes, Dual BCH Codes, Designed Distance.
منابع مشابه
On the Dimension, Minimum Distance, and Duals of Primitive BCH Codes
We determine the dimension and in some cases the minimum distance of primitive, narrow sense BCH codes of length n with small designed distance. We show that such a code contains its Euclidean dual code and, when the size of the field is a perfect square, also its Hermitian dual code. We establish two series of quantum error-correcting codes.
متن کاملBounds on the minimum distance of the duals of BCH codes
We consider primitive cyclic codes of length p − 1 over Fp. The codes of interest here are duals of BCH codes. For these codes, a lower bound on their minimum distance can be found via the adaptation of the Weil bound to cyclic codes (see [10]). However, this bound is of no significance for roughly half of these codes. We shall fill this gap by giving, in the first part of the paper, a lower bo...
متن کاملOn the Distance Distribution of Duals of BCH Codes
We derive upper bounds on the components of the distance distribution of duals of BCH codes.
متن کاملOn the duals of binary BCH codes
We give bounds for the minimal distance of duals of binary BCH codes in a range where the Carlitz-Uchiyama bound is trivial. This is done by estimating the number of points on certain curves over finite fields.
متن کاملSuccinct Representation of Codes with Applications to Testing
Motivated by questions in property testing, we search for linear error-correcting codes that have the “single local orbit” property: i.e., they are specified by a single local constraint and its translations under the symmetry group of the code. We show that the dual of every “sparse” binary code whose coordinates are indexed by elements of F2n for prime n, and whose symmetry group includes the...
متن کامل