Self-assembly of diphenylalanine peptide with controlled polarization for power generation

نویسندگان

  • Vu Nguyen
  • Ren Zhu
  • Kory Jenkins
  • Rusen Yang
چکیده

Peptides have attracted considerable attention due to their biocompatibility, functional molecular recognition and unique biological and electronic properties. The strong piezoelectricity in diphenylalanine peptide expands its technological potential as a smart material. However, its random and unswitchable polarization has been the roadblock to fulfilling its potential and hence the demonstration of a piezoelectric device remains lacking. Here we show the control of polarization with an electric field applied during the peptide self-assembly process. Uniform polarization is obtained in two opposite directions with an effective piezoelectric constant d33 reaching 17.9 pm V-1. We demonstrate the power generation with a peptide-based power generator that produces an open-circuit voltage of 1.4 V and a power density of 3.3 nW cm-2. Devices enabled by peptides with controlled piezoelectricity provide a renewable and biocompatible energy source for biomedical applications and open up a portal to the next generation of multi-functional electronics compatible with human tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires

Controlling the self-assembly of diphenylalanine peptide (FF) into various nanoarchitectures has received great amounts of attention in recent years. Here, we report the temperature-induced reversible self-assembly of diphenylalanine peptide to microtubes, nanowires, or organogel in different solvents. We also find that the organogel in isopropanol transforms into crystalline flakes or nanowire...

متن کامل

Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly.

Breaking the mold: Self-assembled peptide nanowires were used as a template for the synthesis of hollow polyaniline (PANI) nanotubes (see scanning electron microscopy images). The thickness and the morphology of the PANI nanostructures could be controlled readily either by varying the reaction time or by applying multiple PANI coatings.

متن کامل

Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.

To gain insight into the hierarchical self-assembly of peptides and the surface effect on assembly formation, an aromatic peptide of diphenylalanine (FF) was used in this study as the model peptide. We found that the diphenylalanine peptide could self-assemble into a core-branched nanostructure through non-covalent interactions in aqueous solution. The pre-assemblies further assembled into nano...

متن کامل

Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures...

متن کامل

Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid.

Concave nanospheres based on the self-assembly of simple dipeptides not only provide alternatives for modeling the interactions between biomacromolecules, but also present a range of applications for purification and separation, and delivery of active species. The kinetic control of the peptide assembly provides a unique opportunity to build functional and dynamic nanomaterials, such as concave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016