Combinatorial Library Design Using a Multiobjective Genetic Algorithm

نویسندگان

  • Valerie J. Gillet
  • Wael Khatib
  • Peter Willett
  • Peter J. Fleming
  • Darren V. S. Green
چکیده

Early results from screening combinatorial libraries have been disappointing with libraries either failing to deliver the improved hit rates that were expected or resulting in hits with characteristics that make them undesirable as lead compounds. Consequently, the focus in library design has shifted toward designing libraries that are optimized on multiple properties simultaneously, for example, diversity and "druglike" physicochemical properties. Here we describe the program MoSELECT that is based on a multiobjective genetic algorithm and which is able to suggest a family of solutions to multiobjective library design where all the solutions are equally valid and each represents a different compromise between the objectives. MoSELECT also allows the relationships between the different objectives to be explored with competing objectives easily identified. The library designer can then make an informed choice on which solution(s) to explore. Various performance characteristics of MoSELECT are reported based on a number of different combinatorial libraries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach

The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...

متن کامل

Experimental Analysis of Design Elements of Scalarizing Functions-based Multiobjective Evolutionary Algorithms

In this paper we systematically study the importance, i.e., the influence on performance, of the main design elements that differentiate scalarizing functions-based multiobjective evolutionary algorithms (MOEAs). This class of MOEAs includes Multiobjecitve Genetic Local Search (MOGLS) and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) and proved to be very successful in m...

متن کامل

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

A Multiobjective Genetic Algorithm for Radio Network Optimization

Engineering of mobile telecommunication networks endures two major problems: the design of the network, and the frequency assignment. We address the first problem in this paper, which has been formulated as a multiobjective constrained combinatorial optimisation problem. We propose a genetic algorithm that aims to approximate the Pareto frontier of the problem. Advanced techniques have been use...

متن کامل

A hybrid genetic/immune strategy to tackle the multiobjective quadratic assignment problem

The Genetic Immune Strategy for Multiple Objective Optimization (GISMOO) is a hybrid algorithm for solving multiobjective problems. The performance of this approach has been assessed using a classical combinatorial multiobjective optimization benchmark: the multiobjective 0/1 knapsack problem (MOKP) [1] and two-dimensional unconstrained multiobjective problems (ZDT) [2]. This paper shows that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2002