Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel
نویسندگان
چکیده
CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored.
منابع مشابه
Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development.
FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, are key components in phytochrome A signaling and the circadian clock. Here, we use chromatin immunoprecipitation-based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in th...
متن کاملA pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we r...
متن کاملArabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling.
Phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) are two small plant-specific proteins essential for light-regulated phyA nuclear accumulation and subsequent phyA signaling processes. FHY3 and its homolog FAR-RED IMPAIRED RESPO...
متن کاملArabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock.
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent ...
متن کاملFAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis.
Light and the phytohormone abscisic acid (ABA) regulate overlapping processes in plants, such as seed germination and seedling development. However, the molecular mechanism underlying the interaction between light and ABA signaling is largely unknown. Here, we show that FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two key positive transcription factors in the phyto...
متن کامل