Generation of Fretting Wear Debris at the Stem– Cement Interface in Total Hip Replacment

نویسنده

  • H. Zhang
چکیده

Fretting wear debris generated at the stem–cement interface has nowadays been considered to play an important role in the overall failure of cemented total hip replacement (THR). Those wear debris within a certain size range would transport along bone cement deficiencies to bone tissue, resulting in a significant bone resorption and subsequent aseptic loosening of the femoral component, which is regarded as the primary reason for revision of cemented THR. In order to study the influence of the time period of in vivo service of the prosthesis on generation of fretting wear debris, we performed two in vitro wear simulations using identical femoral stem and bone cement, but applying different loading cycles. By conducting a detailed investigation of the bone cement surface with the use of optical microscope, scanning electron microscope (SEM) associated with energy dispersive X-ray (EDX) analysis, we came to a conclusion that for the specific bone cement studied, sufficient loading cycles were required to dislodge the metallic debris from the femoral stem surface, which indicated that generation of fretting wear debris was indeed influenced by the time period of in vivo service of the prosthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproduction of fretting wear at the stem-cement interface in total hip replacement.

The stem-cement interface experiences fretting wear in vivo due to low-amplitude oscillatory micromotion under physiological loading, as a consequence it is considered to play an important part in the overall wear of cemented total hip replacement. Despite its potential significance, in-vitro simulation to reproduce fretting wear has seldom been attempted and even then with only limited success...

متن کامل

Femoral stem wear in cemented total hip replacement.

The great success of cemented total hip replacement to treat patients with endstage osteoarthritis and osteonecrosis has been well documented. However, its long-term survivorship has been compromised by progressive development of aseptic loosening, and few hip prostheses could survive beyond 25 years. Aseptic loosening is mainly attributed to bone resorption which is activated by an in-vivo mac...

متن کامل

The influence of surface topography on wear debris generation at the cement/bone interface under cyclic loading.

The long-term success of a total joint replacement can be undermined by loosening of the implant, generation of wear debris or a combination of both factors. In the present study the influence of the surface morphologies of the bone and cement mantle on loosening of cemented total joint replacements (THJRs) and development of wear debris were studied. Model cemented THJR specimens were prepared...

متن کامل

A retrieval study of capital hip prostheses with titanium alloy femoral stems.

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated. The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was latera...

متن کامل

Spontaneous modular femoral head dissociation complicating total hip arthroplasty.

Modular femoral heads have been used successfully for many years in total hip arthroplasty. Few complications have been reported for the modular Morse taper connection between the femoral head and trunnion of the stem in metal-on-polyethylene bearings. Although there has always been some concern over the potential for fretting, corrosion, and generation of particulate debris at the modular junc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015