Acclimation of E miliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P
نویسندگان
چکیده
Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients.
منابع مشابه
Macronutrient Utilization by Photosynthetic Eukaryotes and the Fabric of Interactions.
Organisms acclimate to a continually fluctuating nutrient environment. Acclimation involves responses specific for the limiting nutrient as well as responses that are more general and occur when an organism experiences different stress conditions. Specific responses enable organisms to efficiently scavenge the limiting nutrient and may involve the induction of high-affinity transport systems an...
متن کاملP-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملThe effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios
Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three...
متن کاملResponses of the Emiliania huxleyi Proteome to Ocean Acidification
Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combin...
متن کاملPodagrica Uniforma and Nisota dilecta (Coleoptera: Chrysomalidae) Infesta-tion on Okra (Abelmoschus esculentus) in Response to Nutrient Sources
BACKGROUND: The ability of a plant to resist or tolerate pests is grounded partially in favorable physical, chemical and biological properties of soil. OBJECTIVES: Investigate the influence of nutrient sources on Podagrica uniforma and Nisota dilecta infestation, population dynamics and performances of okra. METHODS: </stro...
متن کامل