Faces Recognition with Image Feature Weights and Least Mean Square Learning Approach

نویسندگان

  • Wei-Li Fang
  • Ying-Kuei Yang
چکیده

Most of 2DPCA-enhanced approaches improve face recognition rate while at the expense of computation load. In this paper, an approach is proposed to greatly improve face recognition rate with slightly increased computation load. In this approach, the 2DPCA is applied against a face image to extract important image features for selection. A weight is then assigned to each of selected image features according to the feature’s importance to face recognition. The least mean square (LMS) algorithm is further applied to optimize the feature weights based on the recognition error rate during learning process in order to improve face recognition performance. The experiments have been conducted against ORL face image database to make performance comparisons among several better-known approaches, and the experimental results have demonstrated that the proposed approach not only has excellent face recognition rate of 99% but also requires only slightly higher computation load than 2DPCA, making the approach more practical to real face recognition applications..

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Feature Reconstruction for Face Recognition Based on Sample Image Learning

recognition technology under real world conditions. In this paper, appearance based approach was proposed to recognize face across front and non-frontal view images by reconstructing frontal view features. Statistical learning method based on sample images is applied to find transformation matrix which encapsulated general knowledge of pose transition in feature subspace, therefore, different v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014