Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

نویسندگان

  • F Q Schafer
  • G R Buettner
چکیده

Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

30 th Southern Tree Improvement Conference

Glutathione/ glutathione disulfide and ascorbic acid /dehydroascorbateare two major redox pairs that control the redox-state in a developing seed.Recently these redox compounds have been shown to exert strong positive effectson embryo development in several plants including white spruce. A picture isemerging that early-stage embryo development occurs best in the presence of a<lb...

متن کامل

Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.

Cellular redox, maintained by the glutathione (GSH)- and thioredoxin (Trx)-dependent systems, has been implicated in the regulation of a variety of biological processes. The redox state of the GSH system becomes oxidized when cells are induced to differentiate by chemical agents. The aim of this study was to determine the redox state of cellular GSH/glutathione disulfide (GSH/GSSG) and Trx as a...

متن کامل

In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis.

The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H(2)O(2)) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (E(GSH)) and H(2)O(2) in defined subcellular compartments (cytosol and m...

متن کامل

Cellular zinc and redox states converge in the metallothionein/thionein pair.

The paramount importance of zinc for a wide range of biological functions is based on its occurrence in thousands of known zinc proteins. To regulate the availability of zinc dynamically, eukaryotes have compartmentalized zinc and the metallothionein/thionein pair, which controls the pico- to nanomolar concentrations of metabolically active cellular zinc. Interactions of zinc with sulfur ligand...

متن کامل

Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state.

BACKGROUND Oxidative stress, a contributing factor to atherosclerosis, causes oxidation of biological thiols, which can be quantified in terms of the thiol/disulfide redox. The major thiol/disulfide redox couple in human plasma is cysteine (Cys) and its disulfide, cystine (CySS). Although atherosclerosis has previously been associated with Cys/CySS oxidation, whether oxidation of Cys/CySS contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 30 11  شماره 

صفحات  -

تاریخ انتشار 2001