Model - Averaged ` 1 Regularization using Markov Chain Monte Carlo Model Composition

نویسندگان

  • Chris Fraley
  • Daniel Percival
چکیده

This paper studies combining `1 regularization and Markov chain Monte Carlo model composition techniques for Bayesian model averaging (BMA). The main idea is to resolve the model uncertainty issues arising from path point selection by treating the `1 regularization path as a model space for BMA. The method is developed for linear and logistic regression, and applied to sample classification in four different biomedical datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection by Markov Chain Monte Carlo Sampling - A Bayesian Approach

We redefine the problem of feature selection as one of model selection and propose to use a Markov Chain Monte Carlo method to sample models. The applicability of our method is related to Bayesian network classifiers. Simulation experiments indicate that our novel proposal distribution results in an ignorant proposal prior. Finally, it is shown how the sampling can be controlled by a regulariza...

متن کامل

Monte Carlo Hidden Markov Models

We present a learning algorithm for hidden Markov models with continuous state and observation spaces. All necessary probability density functions are approximated using samples, along with density trees generated from such samples. A Monte Carlo version of Baum-Welch (EM) is employed to learn models from data, just as in regular HMM learning. Regularization during learning is obtained using an...

متن کامل

Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes

We present a learning algorithm for non-parametric hidden Markov models with continuous state and observation spaces. All necessary probability densities are approximated using samples, along with density trees generated from such samples. A Monte Carlo version of Baum-Welch (EM) is employed to learn models from data. Regularization during learning is achieved using an exponential shrinking tec...

متن کامل

Image Deblurring, Gaussian Markov Random Fields, and Neumann Boundary Conditions

In this paper we consider the inverse problem of image deblurring with Neumann boundary conditions. Regularization is incorporated by using Gaussian Markov random fields (GMRFs) to model an appropriate prior on the image pixel values. We provide a linear algebraic framework for GMRFs, and we establish an important connection between GMRFs studied in the statistical literature, and negative-Lapl...

متن کامل

A Moreau-yosida Approximation Scheme for High-dimensional Posterior and Quasi-posterior Distributions

Exact-sparsity inducing prior distributions in high-dimensional Bayesian analysis typically lead to posterior distributions that are very challenging to handle by standard Markov Chain Monte Carlo methods. We propose a methodology to derive a smooth approximation of such posterior distributions. The approximation is obtained from the forward-backward approximation of the Moreau-Yosida regulariz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008