Online Alternating Direction Method (longer version)

نویسندگان

  • Huahua Wang
  • Arindam Banerjee
چکیده

Online optimization has emerged as powerful tool in large scale optimization. In this paper, we introduce efficient online optimization algorithms based on the alternating direction method (ADM), which can solve online convex optimization under linear constraints where the objective could be nonsmooth. We introduce new proof techniques for ADM in the batch setting, which yields a O(1/T ) convergence rate for ADM and forms the basis for regret analysis in the online setting. We consider two scenarios in the online setting, based on whether an additional Bregman divergence is needed or not. In both settings, we establish regret bounds for both the objective function as well as constraints violation for general and strongly convex functions. We also consider inexact ADM updates where certain terms are linearized to yield efficient updates and show the stochastic convergence rates. In addition, we briefly discuss that online ADM can be used as projection-free online learning algorithm in some scenarios. Preliminary results are presented to illustrate the performance of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

Parallelizing Alternating Direction Implicit Solver on GPUs

We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves existing implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR) implementations by eliminating their hardware resource constraints. As a result, our parallel ADI, which is based on PCR, no longer has the maximum domain ...

متن کامل

Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives

The alternating direction of multipliers (ADMM) is a form of augmented Lagrangian algorithm that has experienced a renaissance in recent years due to its applicability to optimization problems arising from “big data” and image processing applications, and the relative ease with which it may be implemented in parallel and distributed computational environments. While it is easiest to describe th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1306.3721  شماره 

صفحات  -

تاریخ انتشار 2013