Joint Optic Disc and Cup Segmentation Based on Multi-label Deep Network and Polar Transformation

نویسندگان

  • Huazhu Fu
  • Jun Cheng
  • Yanwu Xu
  • Damon Wing Kee Wong
  • Jiang Liu
  • Xiaochun Cao
چکیده

Glaucoma is a chronic eye disease that leads to irreversible vision loss. The cup to disc ratio (CDR) plays an important role in the screening and diagnosis of glaucoma. Thus, the accurate and automatic segmentation of optic disc (OD) and optic cup (OC) from fundus images is a fundamental task. Most existing methods segment them separately, and rely on hand-crafted visual feature from fundus images. In this paper, we propose a deep learning architecture, named M-Net, which solves the OD and OC segmentation jointly in a one-stage multilabel system. The proposed M-Net mainly consists of multi-scale input layer, U-shape convolutional network, side-output layer, and multi-label loss function. The multi-scale input layer constructs an image pyramid to achieve multiple level receptive field sizes. The U-shape convolutional network is employed as the main body network structure to learn the rich hierarchical representation, while the side-output layer acts as an early classifier that produces a companion local prediction map for different scale layers. Finally, a multi-label loss function is proposed to generate the final segmentation map. For improving the segmentation performance further, we also introduce the polar transformation, which provides the representation of the original image in the polar coordinate system. The experiments show that our M-Net system achieves state-of-the-art OD and OC segmentation result on ORIGA dataset. Simultaneously, the proposed method also obtains the satisfactory glaucoma screening performances with calculated CDR value on both ORIGA and SCES datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing

Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...

متن کامل

Evaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing

Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Optic Disc and Cup Segmentation for glaucoma Screening based on Superpixel classification

Glaucoma is a chronic eye disease that leads to blindness. This disease cannot be cured but we can detect the disease in time. Current tests using intraocular pressure (IOP) measurement are not sensitive enough for population based glaucoma screening. Optic nerve head assessment in retinal fundus images is more promising and superior than current methods. This paper proposes segmentation of opt...

متن کامل

Optic Disc and Optic Cup Segmentation for Glaucoma Detection

Glaucoma is an eye disease that leads to vision loss. The symptoms of the glaucoma occurs when disease is quite advance. Glaucoma is called ‘silent thief of sight’ so, that early detection of glaucoma is very essential. In existing approach three methods are used to detect glaucoma namely Assessment of raised intraocular pressure (IOP).Assessment of abnormal visual field. Assessment of damaged ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00926  شماره 

صفحات  -

تاریخ انتشار 2018