Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation.

نویسندگان

  • Christopher Moraes
  • Jan-Hung Chen
  • Yu Sun
  • Craig A Simmons
چکیده

Mechanical forces play an important role in regulating cellular function and have been shown to modulate cellular response to other factors in the cellular microenvironment. Presently, no technique exists to rapidly screen for the effects of a range of uniform mechanical forces on cellular function. In this work, we developed and characterized a novel microfabricated array capable of simultaneously applying cyclic equibiaxial substrate strains ranging in magnitude from 2 to 15% to small populations of adherent cells. The array is versatile, and capable of simultaneously generating a range of substrate strain fields and magnitudes. The design can be extended to combinatorially manipulate other mechanobiological culture parameters in the cellular microenvironment. As a first demonstration of this technology, the array was used to determine the effects of equibiaxial mechanical strain on activation of the canonical Wnt/beta-catenin signaling pathway in cardiac valve mesenchymal progenitor cells. This high-throughput approach to mechanobiological screening enabled the identification of a novel co-dependence between strain magnitude and duration of stimulation in controlling beta-catenin nuclear accumulation. More generally, this versatile platform has broad applicability in the fields of mechanobiology, tissue engineering and pathobiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.

High-throughput screening techniques for cellular response are often unable to account for several factors present in the in vivo environment, many of which have been shown to modulate cellular response to the screened parameter. Culture in three-dimensional biomaterials and active mechanical stimulation are two such factors. In this work, we integrate these microenvironmental parameters into a...

متن کامل

Nootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method

The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...

متن کامل

Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been...

متن کامل

Cell interactions with biomaterials gradients and arrays.

Gradients and arrays have become very useful to the fields of tissue engineering and biomaterials. Both gradients and arrays make efficient platforms for screening cell response to biomaterials. Graded biomaterials also have functional applications and make useful substrates for fundamental studies of cell phenomena such as migration. This article will review the use of gradients and arrays in ...

متن کامل

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2010