Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics

نویسندگان

  • Mounir Bennoune
  • Mohammed Lemou
  • Luc Mieussens
چکیده

In this paper we develop a numerical method to solve Boltzmann like equations of kinetic theory which is able to capture the compressible Navier-Stokes dynamics at small Knudsen numbers. Our approach is based on the micro/macro decomposition technique, which applies to general collision operators. This decomposition is performed in all the phase space and leads to an equivalent formulation of the Boltzmann (or BGK) equation that couples a kinetic equation with macroscopic ones. This new formulation is then discretized with a semi-implicit time scheme combined with a staggered grid space discretization. Finally, several numerical tests are presented in order to illustrate the efficiency of our approach. Incidentally, we also introduce in this paper a modification of a standard splitting method that allows to preserve the compressible Navier-Stokes asymptotics in the case of the simplified BGK model. Up to our knowledge, this property is not known for general collision operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit

Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number ε goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we ana...

متن کامل

Discontinuous Galerkin method for Navier-Stokes equations using kinetic flux vector splitting

Kinetic schemes for compressible flow of gases are constructed by exploiting the connection between Boltzmann equation and the Navier-Stokes equations. This connection allows us to construct a flux splitting for the NavierStokes equations based on the direction of molecular motion from which a numerical flux can be obtained. The naive use of such a numerical flux function in a discontinuous Gal...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...

متن کامل

High-order I-stable centered difference schemes for viscous compressible flows

In this paper we present high-order I-stable centered difference schemes for the numerical simulation of viscous compressible flows. Here I-stability refers to time discretizations whose linear stability regions contain part of the imaginary axis. This class of schemes has a numerical stability independent of the cell-Reynolds number Rc, thus allows one to simulate high Reynolds number flows wi...

متن کامل

Finite Difference Lattice Boltzmann Method for Compressible Thermal Fluids

A finite difference lattice Boltzmann method based on the Bhatnagar–Gross–Krook-type modeled Boltzmann equation is proposed. Themethod relies on a different lattice equilibriumparticle distribution function and the use of a splitting method to solve the modeled lattice Boltzmann equation. The splitting technique permits the boundary conditions for the lattice Boltzmann equation to be set as con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008