Dynamics of nanoconfined water under pressure.

نویسندگان

  • S O Diallo
  • M Jażdżewska
  • J C Palmer
  • E Mamontov
  • K E Gubbins
  • M Śliwińska-Bartkowiak
چکیده

We report a study of the effects of pressure on the diffusivity of water molecules confined in single-wall carbon nanotubes (SWNT) with average mean pore diameter of ~16 Å. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220≤T≤260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from ~1.92 kbar at temperature T=260 K to ~1.85 kbar at T=220 K. Analysis of the observed dynamic structure factor S(Q,E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of "caged" or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluidity of hydration layers nanoconfined between mica surfaces.

We perform molecular dynamics simulations to investigate the shear dynamics of hydration water nanoconfined between two mica surfaces at 1 bar pressure and 298 K. Newtonian plateaus of shear viscosity comparable to the bulk value for different hydration layers D=0.92-2.44 nm are obtained. The origin of this persistent fluidity of the confined aqueous system is found to be closely associated wit...

متن کامل

Scaling behaviour for the water transport in nanoconfined geometries

The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter θ as D(θ)...

متن کامل

Molecular mechanisms causing anomalously high thermal expansion of nanoconfined water.

Anomalously high thermal expansion is measured in water confined in nanoscale pores in amorphous silica and the molecular mechanisms are identified by molecular dynamics (MD) simulations using an accurate dissociative water potential. The experimentally measured coefficient of thermal expansion (CTE) of nanoconfined water increases as pore dimension decreases. The simulations match this behavio...

متن کامل

Solid-liquid critical behavior of water in nanopores.

Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-di...

متن کامل

Surface effect on the electromelting behavior of nanoconfined water.

Electric field induced phase transitions of confined water have an important role in cryopreservation and electrocrystallization. In this study, the structural and dynamical properties of nano-confined water in nano-slit pores under the influence of an electric field varying from 0 to 10 V nm(-1) are investigated under ambient conditions using molecular dynamics simulations. In order to replica...

متن کامل

Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions.

Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from "liquidlike" to "solidlike" behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2013