Saccharomyces cerevisiae glucose signalling regulator Mth1p regulates the organellar Na+/H+ exchanger Nhx1p.

نویسندگان

  • Keiji Mitsui
  • Masafumi Matsushita
  • Hiroshi Kanazawa
چکیده

Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion.

Nhx1p is a Na(+)(K(+))/H(+) antiporter localized at the vacuolar membrane of the yeast Saccharomyces cerevisiae. Nhx1p regulates the acidification of cytosol and vacuole lumen, and is involved in membrane traffic from late endosomes to the vacuole. Deletion of the gene leads to aberrant vacuolar morphology and defective vacuolar protein sorting. These phenotypes are hallmarks of malfunctioning ...

متن کامل

The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae.

We show that the vacuolar protein sorting gene VPS44 is identical to NHX1, a gene that encodes a sodium/proton exchanger. The Saccharomyces cerevisiae protein Nhx1p shows high homology to mammalian sodium/proton exchangers of the NHE family. Nhx1p is thought to transport sodium ions into the prevacuole compartment in exchange for protons. Pulse-chase experiments show that approximately 35% of t...

متن کامل

Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase.

Several components of the glucose induction pathway, namely the Snf3p glucose sensor and the Rgt1p and Mth1p transcription factors, were shown to be involved in inhibition of sporulation by glucose. The glucose sensors had only a minor role in regulating transcript levels of the two key regulators of meiotic initiation, the Ime1p transcription factor and the Ime2p kinase, but a major role in re...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 432 2  شماره 

صفحات  -

تاریخ انتشار 2010