Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects.

نویسندگان

  • Chao-Ni He
  • Wei-Qing Huang
  • Liang Xu
  • Yin-Cai Yang
  • Bing-Xin Zhou
  • Gui-Fang Huang
  • P Peng
  • Wu-Ming Liu
چکیده

The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning near - gap electronic structure , interface charge transfer and visible light response of hybrid doped graphene and Ag 3 PO 4

The enhanced photocatalytic performance of doped graphene(GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the effect of dopants, we investigate the electronic structures and optical properites of doped GR/Ag 3 PO 4 nanocomposites using the first-principles calculati...

متن کامل

Influence of Cr dopant on the microstructure and optical properties of ZnO nanorods

One-dimensional (1D) undoped and Cr doped ZnO nanorods with average length of 1 µm and diameter of 80 nm were synthesized using hydrothermal method where a fast growth of ZnO nanorods on the seed layer was observed. Afterwards, the effects of Cr dopant on structural, surface morphology and optical properties of nanorods were studied using X-ray diffraction (XRD), scanning electron microscopy (S...

متن کامل

Synthesis and structural properties of Mn-doped ZnO/Graphene nanocomposite

Zinc oxide (ZnO) is a promising metal oxide semiconductor with various applications, especially in the photocatalytic destruction of environmental pollutants. However, this nanoparticle has some limitations, such as poor dispersion, aggregation, and a wide energy gap. As such, the doping of metal oxide semiconductor has been strongly recommended. Addition of manganese (Mn) has proven effective ...

متن کامل

Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure.

We demonstrate a dynamic surface plasmonic modulation based on graphene-nanowire (grapheme-NW) hybrid structures in the visible light range. A static modulation depth of as high as 0.07 dB/μm has been achieved experimentally. Through careful simulation and systematical experimental investigation, we found that the dual-confinement effect of charge density and electromagnetic energy around the v...

متن کامل

Dramatically Enhanced Visible Light Response of Monolayer ZrS2 via Non-covalent Modification by Double-Ring Tubular B20 Cluster

The ability to strongly absorb light is central to solar energy conversion. We demonstrate here that the hybrid of monolayer ZrS2 and double-ring tubular B20 cluster exhibits dramatically enhanced light absorption in the entire visible spectrum. The unique near-gap electronic structure and large built-in potential at the interface will lead to the robust separation of photoexcited charge carrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016