Simulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime

نویسندگان

  • M. Hakak Khadem
  • S. Hossainpour
چکیده

A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of rarefaction as well as compressibility. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. High influence of roughness shape can be seen for both compressible and incompressible rarefied flows. In addition it is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. Keywords—Relative roughness, slip flow, Poiseuille number, roughness distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study th...

متن کامل

A phenomenological lubrication model for the entire Knudsen regime

Rarefied gas flows in thin film slider bearings are studied in a wide range of Knudsen numbers (Kn) at low Mach number (Ma) with the objective of developing simple physics-based semi-analytical models. A recently developed modified slip boundary condition for steady plane Couette flows and a generalized high-order velocity slip boundary condition, developed and validated earlier for pressure-dr...

متن کامل

Calculation of Friction Coefficient and Analysis of Fluid Flow in a Stepped Micro-Channel for Wide Range of Knudsen Number Using Lattice Boltzmann (MRT) Method

  Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT) method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the veloci...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

Lattice Boltzmann simulation of rarefied gas flows in microchannels.

For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach number is negligibly small. Since the Knudsen number of the gas flow in a long microchannel can vary widely and the Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1, an alternative method that can be applicable to continuum, slip and transition flow regimes is highly desirable. The la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012