A pr 2 00 8 REPRESENTATIONS OF POINTED HOPF ALGEBRAS AND THEIR DRINFEL ’ D QUANTUM DOUBLES
نویسنده
چکیده
We study representations of nilpotent type nontrivial liftings of quantum linear spaces and their Drinfel’d quantum doubles. We construct a family of Vermatype modules in both cases and prove a parametrization theorem for the simple modules. We compute the Loewy and socle series of Verma modules under a mild restriction on the datum of a lifting. We find bases and dimensions of simple modules.
منابع مشابه
2 00 8 Representations of Pointed Hopf Algebras and Their Drinfel ’ D Quantum Doubles
We study representations of nilpotent type nontrivial liftings of quantum linear spaces and their Drinfel’d quantum doubles. We construct a family of Vermatype modules in both cases and prove a parametrization theorem for simple modules. We compute the Loewy and socle series of Verma modules under a mild restriction on the datum of a lifting. We find bases and dimensions of simple modules.
متن کاملA Class of Quantum Doubles Which Are Ribbon Algebras
Andruskiewitsch and Schneider classify a large class of pointed Hopf algebras with abelian coradical. The quantum double of each such Hopf algebra is investigated. The quantum doubles of a family of Hopf algebras from the above classification are ribbon Hopf algebras. Introduction Quasitriangular Hopf algebras have an universal R-matrix which is a solution of the Yang-Baxter equation and their ...
متن کاملFactorization of Simple Modules for Certain Pointed Hopf Algebras
We study the representations of two types of pointed Hopf algebras: restricted two-parameter quantum groups, and the Drinfel’d doubles of rank one pointed Hopf algebras of nilpotent type. We study, in particular, under what conditions a simple module can be factored as the tensor product of a one dimensional module with a module that is naturally a module for the quotient by central group-like ...
متن کاملar X iv : m at h / 04 10 15 0 v 8 [ m at h . Q A ] 1 5 A ug 2 00 5 CLASSIFICATION OF PM QUIVER HOPF ALGEBRAS
We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and their corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.
متن کاملar X iv : m at h / 04 10 15 0 v 6 [ m at h . Q A ] 1 9 Ju l 2 00 5 CLASSIFICATION OF PM QUIVER HOPF ALGEBRAS
We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and their corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.
متن کامل