Mining and Modelling Temporal Clinical Data
نویسندگان
چکیده
The Clinical e-Science Framework (CLEF) demonstrator runs Information Extraction technology over textual, narrative patient notes to assemble repositories of clinical patient data for the purposes of biomedical research and clinical care. Since many important medical events in the course of a patient’s treatment are mentioned in multiple documents and most documents will only include partial descriptions of these events, constructing a coherent and complete summary of a patient’s history – what we call a patient chronicle requires an information integration step over the output of Information Extraction. In this paper we describe and evaluate an approach to information integration which is based on mining narrative patient notes for temporal properties of medically relevant events and combining these with temporal information about events as provided by the structured (i.e., non-narrative) part of a patient’s health record.
منابع مشابه
Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملModelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach
In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...
متن کاملAn Improvement in Temporal Resolution of Seismic Data Using Logarithmic Time-frequency Transform Method
The improvement in the temporal resolution of seismic data is a critical issue in hydrocarbon exploration. It is important for obtaining more detailed structural and stratigraphic information. Many methods have been introduced to improve the vertical resolution of reflection seismic data. Each method has advantages and disadvantages which are due to the assumptions and theories governing their ...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملFunctional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization
Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multimodal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts’ requirements, and...
متن کامل