Convective lyapunov exponents and propagation of correlations
نویسندگان
چکیده
We conjecture that in one-dimensional spatially extended systems the propagation velocity of correlations coincides with a zero of the convective Lyapunov spectrum. This conjecture is successfully tested in three different contexts: (i) a Hamiltonian system (a Fermi-Pasta-Ulam chain of oscillators); (ii) a general model for spatiotemporal chaos (the complex Ginzburg-Landau equation); (iii) experimental data taken from a CO2 laser with delayed feedback. In the last case, the convective Lyapunov exponent is determined directly from the experimental data.
منابع مشابه
ar X iv : c ha o - dy n / 99 11 02 5 v 1 1 8 N ov 1 99 9 General properties of propagation in chaotic systems
We conjecture that in one-dimensional spatially extended systems the propagation velocity of correlations coincides with a zero of the convective Lyapunov spectrum. This conjecture is successfully tested in three different contexts: (i) a Hamiltonian system (a Fermi-Pasta-Ulam chain of oscillators); (ii) a general model for spatio-temporal chaos (the complex Ginzburg-Landau equation); (iii) exp...
متن کاملSpace-time directional Lyapunov exponents for cellular automata
Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.
متن کامل6 Space - time directional Lyapunov exponents for cellular automata
Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.
متن کاملThe Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms
Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...
متن کاملLyapunov Exponents and Rates of Mixing for One-dimensional Maps
We show that one dimensional maps f with strictly positive Lyapunov exponents almost everywhere admit an absolutely continuous invariant measure. If f is topologically transitive some power of f is mixing and in particular the correlation of Hölder continuous observables decays to zero. The main objective of this paper is to show that the rate of decay of correlations is determined, in some sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 85 17 شماره
صفحات -
تاریخ انتشار 2000