Recognition of Non-Compound Handwritten Devnagari Characters using a Combination of MLP and Minimum Edit Distance

نویسندگان

  • Sandhya Arora
  • Debotosh Bhattacharjee
  • Mita Nasipuri
  • Dipak Kumar Basu
  • Mahantapas Kundu
چکیده

This paper deals with a new method for recognition of offline Handwritten noncompound Devnagari Characters in two stages. It uses two well known and established pattern recognition techniques: one using neural networks and the other one using minimum edit distance. Each of these techniques is applied on different sets of characters for recognition. In the first stage, two sets of features are computed and two classifiers are applied to get higher recognition accuracy. Two MLP’s are used separately to recognize the characters. For one of the MLP’s the characters are represented with their shadow features and for the other chain code histogram feature is used. The decision of both MLP’s is combined using weighted majority scheme. Top three results produced by combined MLP’s in the first stage are used to calculate the relative difference values. In the second stage, based on these relative differences character set is divided into two. First set consists of the characters with distinct shapes and second set consists of confused characters, which appear very similar in shapes. Characters of distinct shapes of first set are classified using MLP. Confused

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Classifier Combination for Off-line Handwritten Devnagari Character Recognition

This work presents the application of weighted majority voting technique for combination of classification decision obtained from three Multi_Layer Perceptron(MLP) based classifiers for Recognition of Handwritten Devnagari characters using three different feature sets. The features used are intersection, shadow feature and chain code histogram features. Shadow features are computed globally for...

متن کامل

Recognition of Off-Line Handwritten Devnagari Characters Using Quadratic Classifier

Recognition of handwritten characters is a challenging task because of the variability involved in the writing styles of different individuals. In this paper we propose a quadratic classifier based scheme for the recognition of offline Devnagari handwritten characters. The features used in the classifier are obtained from the directional chain code information of the contour points of the chara...

متن کامل

Devnagari Handwritten Numeral Recognition using Geometric Features and Statistical Combination Classifier

This paper presents a Devnagari Numerical recognition method based on statistical discriminant functions. 17 geometric features based on pixel connectivity, lines, line directions, holes, image area, perimeter, eccentricity, solidity, orientation etc. are used for representing the numerals. Five discriminant functions viz. Linear, Quadratic, Diaglinear, Diagquadratic and Mahalanobis distance ar...

متن کامل

Handwritten Bangla Basic and Compound character recognition using MLP and SVM classifier

A novel approach for recognition of handwritten compound Bangla characters, along with the Basic characters of Bangla alphabet, is presented here. Compared to English like Roman script, one of the major stumbling blocks in Optical Character Recognition (OCR) of handwritten Bangla script is the large number of complex shaped character classes of Bangla alphabet. In addition to 50 basic character...

متن کامل

Accuracy Improvement of Devnagari Character Recognition Combining SVM and MQDF

This paper deals with the recognition of off-line handwritten Devnagari characters. Here two sets of feature are computed and two classifiers are combined to get higher accuracy of Devnagari character recognition. Dimension of the features vector of each set is 392. First feature set is computed based on the directional information obtained from the arc tangent of the gradient. Since most of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1006.5908  شماره 

صفحات  -

تاریخ انتشار 2006