LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana.
نویسندگان
چکیده
We characterized the accumulation patterns of Arabidopsis thaliana proteins, two CuZnSODs, FeSOD, MnSOD, PR1, PR5, and GST1, in response to various pathogen-associated treatments. These treatments included inoculation with virulent and avirulent Pseudomonas syringae strains, spontaneous lesion formation in the lsd1 mutant, and treatment with the salicylic acid (SA) analogs INA (2,6-dichloroisonicotinic acid) and BTH (benzothiadiazole). The PR1, PR5, and GST1 proteins were inducible by all treatments tested, as expected from previous mRNA blot analysis. The two CuZnSOD proteins were induced by SA analogs and in conjunction with lsd1-mediated spreading cell death. Additionally, LSD1 is a part of a signaling pathway for the induction of the CuZnSOD proteins in response to SA but not in lsd1-mediated cell death. We suggest that the spreading lesion phenotype of lsd1 results from a lack of up-regulation of a CuZnSOD responsible for detoxification of accumulating superoxide before the reactive oxygen species can trigger a cell death cascade.
منابع مشابه
Regulation of copper homeostasis by micro-RNA in Arabidopsis.
Major copper proteins in the cytoplasm of plant cells are plastocyanin, copper/zinc superoxide dismutase, and cytochrome c oxidase. Under copper limited conditions, expression of copper/zinc superoxide dismutase is down-regulated and the protein is replaced by iron superoxide dismutase in chloroplasts. We present evidence that a micro-RNA, miR398, mediates this regulation in Arabidopsis thalian...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملAntagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins.
The most familiar form of plant programmed cell death is the hypersensitive response (HR) associated with successful plant immune responses. HR is preceded by an oxidative burst and the generation of both reactive oxygen intermediates (ROI) and NO. The Arabidopsis LSD1 gene encodes a negative regulator of plant programmed cell death that meets several criteria for a regulator of processes relev...
متن کاملLESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis.
LESION SIMULATING DISEASE1 (lsd1) is an important negative regulator of programmed cell death (PCD) in Arabidopsis (Arabidopsis thaliana). The loss-of-function mutations in lsd1 cause runaway cell death triggered by reactive oxygen species. lsd1 encodes a novel zinc finger protein with unknown biochemical activities. Here, we report the identification of CATALASE3 (CAT3) as an lsd1-interacting ...
متن کاملA copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis.
The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 12 11 شماره
صفحات -
تاریخ انتشار 1999