A Privacy-Friendly Loyalty System Based on Discrete Logarithms over Elliptic Curves
نویسندگان
چکیده
Systems for the support of customer relationship management are becoming increasingly attractive for vendors. Loyalty systems provide an interesting possibility for vendors in customer relationship management. This holds for both real world and online vendors. However, beside some potential benefits of a loyalty system, customers may also fear an invasion into their privacy, and may thus refuse to participate in such programs. In this paper, we present a privacyfriendly loyalty system to be used by online vendors to issue loyalty points. The system prevents vendors from exploiting data for the creation of customer profiles by providing unconditional unlinkability of loyalty points with regard to purchases. In the proposed system, we apply the difficulty for the computation of discrete logarithms in a group of prime order to construct a secure and privacy-friendly counter. More precisely, all computations are carried out over special cryptographic groups based on elliptic curves where the decisional DiffieHellman problems can be solved easily while the computational Diffie-Hellman is believed to be hard.
منابع مشابه
New algorithm for the discrete logarithm problem on elliptic curves
A new algorithms for computing discrete logarithms on elliptic curves defined over finite fields is suggested. It is based on a new method to find zeroes of summation polynomials. In binary elliptic curves one is to solve a cubic system of Boolean equations. Under a first fall degree assumption the regularity degree of the system is at most 4. Extensive experimental data which supports the assu...
متن کاملTrapdooring Discrete Logarithms on Elliptic Curves over Rings
This paper introduces three new probabilistic encryption schemes using elliptic curves over rings. The cryptosystems are based on three specific trapdoor mechanisms allowing the recipient to recover discrete logarithms on different types of curves. The first scheme is an embodiment of Naccache and Stern’s cryptosystem and realizes a discrete log encryption as originally wanted in [23] by Vansto...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملDiscrete logarithms in curves over finite fields
The discrete logarithm problem in finite groups is one of the supposedly difficult problems at the foundation of asymmetric or public key cryptography. The first cryptosystems based on discrete logarithms were implemented in the multiplicative groups of finite fields, in which the discrete logarithm problem turned out to be easier than one would wish, just as the factorisation problem at the he...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کامل