Distinct determinants of sparse activation during granule cell maturation.
نویسندگان
چکیده
Adult neurogenesis continually produces a small population of immature granule cells (GCs) within the dentate gyrus. The physiological properties of immature GCs distinguish them from the more numerous mature GCs and potentially enables distinct network functions. To test how the changing properties of developing GCs affect spiking behavior, we examined synaptic responses of mature and immature GCs in hippocampal slices from adult mice. Whereas synaptic inhibition restricted GC spiking at most stages of maturation, the relative influence of inhibition, excitatory synaptic drive, and intrinsic excitability shifted over the course of maturation. Mature GCs received profuse afferent innervation such that spiking was suppressed primarily by inhibition, whereas immature GC spiking was also limited by the strength of excitatory drive. Although the input resistance was a reliable indicator of maturation, it did not determine spiking probability at immature stages. Our results confirm the existence of a transient period during GC maturation when perforant path stimulation can generate a high probability of spiking, but also reveal that immature GC excitability is tempered by functional synaptic inhibition and reduced excitatory innervation, likely maintaining the sparse population activity observed in vivo.
منابع مشابه
Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus.
The dentate gyrus (DG) is a critical entry point regulating function of the hippocampus. Integral to this role are the sparse, selective activation characteristics of the principal cells of the DG, dentate granule cells (DGCs). This sparse activation is important both in cognitive processing and in regulation of pathological activity in disease states. Using a novel, combined dynamic imaging ap...
متن کاملMassively augmented hippocampal dentate granule cell activation accompanies epilepsy development
In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromise...
متن کاملReversal of hippocampal neuronal maturation by serotonergic antidepressants.
Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broa...
متن کاملAnalysis of Protease Activity in Live Antigen-presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents During Dendritic Cell Activation
Here, we describe a new approach designed to monitor the proteolytic activity of maturing phagosomes in live antigen-presenting cells. We find that an ingested particle sequentially encounters distinct protease activities during phagosomal maturation. Incorporation of active proteases into the phagosome of the macrophage cell line J774 indicates that phagosome maturation involves progressive fu...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 49 شماره
صفحات -
تاریخ انتشار 2013