Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering.

نویسندگان

  • Bo Peng
  • Guannan Yu
  • Yawen Zhao
  • Qiang Xu
  • Guichuan Xing
  • Xinfeng Liu
  • Deyi Fu
  • Bo Liu
  • Jun Rong Sherman Tan
  • Wei Tang
  • Haipeng Lu
  • Jianliang Xie
  • Longjiang Deng
  • Tze Chien Sum
  • Kian Ping Loh
چکیده

The performance of a photovoltaic device is strongly dependent on the light harvesting properties of the absorber layer as well as the charge separation at the donor/acceptor interfaces. Atomically thin two-dimensional transition metal dichalcogenides (2-D TMDCs) exhibit strong light-matter interaction, large optical conductivity, and high electron mobility; thus they can be highly promising materials for next-generation ultrathin solar cells and optoelectronics. However, the short optical absorption path inherent in such atomically thin layers limits practical applications. A heterostructure geometry comprising 2-D TMDCs (e.g., MoS2) and a strongly absorbing material with long electron-hole diffusion lengths such as methylammonium lead halide perovskites (CH3NH3PbI3) may overcome this constraint to some extent, provided the charge transfer at the heterostructure interface is not hampered by their band offsets. Herein, we demonstrate that the intrinsic band offset at the CH3NH3PbI3/MoS2 interface can be overcome by creating sulfur vacancies in MoS2 using a mild plasma treatment; ultrafast hole transfer from CH3NH3PbI3 to MoS2 occurs within 320 fs with 83% efficiency following photoexcitation. Importantly, our work highlights the feasibility of applying defect-engineered 2-D TMDCs as charge-extraction layers in perovskite-based optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer.

By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The ...

متن کامل

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...

متن کامل

Electron dynamics in MoS2-graphite heterostructures.

The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The...

متن کامل

Electronic structures at the interface between Au and CH3NH3PbI3.

The electronic properties of interfaces formed between Au and organometal triiodide perovskite (CH3NH3PbI3) are investigated using ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES) and X-ray photoemission spectroscopy (XPS). It is found that the CH3NH3PbI3 film coated onto the substrate of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/...

متن کامل

The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells

Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2016