Phospholipase D is Dispensable for Epidermal Growth Factor-Induced Chemotaxis.

نویسندگان

  • Chihoko Hirai
  • Shaymaa Mohamed Mohamed Badawy
  • Lifang Zhang
  • Taro Okada
  • Taketoshi Kajimoto
  • Shunichi Nakamura
چکیده

α-Synuclein (α-Syn) is implicated in several neurodegenerative disorders, including Parkinson's disease, known collectively as the synucleinopathies. α-Syn is known to be secreted from the cells and may contribute to the progression of the disease. Although extracellular α-Syn is shown to impair platelet-derived growth factor-induced chemotaxis, molecular mechanism of α-Syn-induced motility failure remains elusive. Here we have aimed at phospholipase D (PLD) as a potential target for α-Syn and examined the involvement of this enzyme in α-Syn action. Indeed, extracellular α-Syn caused inhibition of agonist-induced PLD activation. However, inhibition of hydrolytic activity of PLD by 1-butanol treatment showed little or no effect on agonist-induced chemotaxis. These results suggest that some signaling pathways other than PLD may be involved in α-Syn-induced inhibition of chemotaxis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidermal growth factor induces the production of biologically distinguishable diglyceride species from phosphatidylinositol and phosphatidylcholine via the independent activation of type C and type D phospholipases.

An early response to epidermal growth factor in A431 cells is the generation of diglyceride, a physiological activator of protein kinase C. By differentially prelabeling cellular phospholipids with [3H]arachidonate and [3H]myristate, which are incorporated primarily into phosphatidylinositol and phosphatidylcholine, respectively, we have found that epidermal growth factor induces an increase in...

متن کامل

Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution.

Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associa...

متن کامل

Enhancement of neutrophil function by the bronchial epithelium stimulated by epidermal growth factor.

The bronchial epithelium is an important physical barrier that regulates physiological processes including leukocyte trafficking. The aim of the present study was to elucidate the mechanisms whereby the bronchial epithelium, stimulated by epidermal growth factor (EGF) as part of a response to acute or chronic injury, could activate and chemoattract human neutrophils. Subconfluent human bronchia...

متن کامل

Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling.

Phospholipase D catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid, and there is currently much interest in elucidating messenger functions for this molecule. We report here that wounding sheets of corneal epithelial and Madin Darby canine kidney cells induces strong activation of phospholipase D, and we provide evidence that activation is amplified through a positive...

متن کامل

Secretory phospholipase A(2) inhibits epidermal growth factor-induced receptor activation.

Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Kobe journal of medical sciences

دوره 62 6  شماره 

صفحات  -

تاریخ انتشار 2017