New Lower Bounds on the Multicolor Ramsey Numbers Rr(C2m)
نویسندگان
چکیده
The multicolor Ramsey number rk(C4) is the smallest integer n for which any k-coloring of the edges of the complete graph Kn must produce a monochromatic 4-cycle. In [6] and [3] it was proved that rk(C4) ≥ k2−k+2 for k − 1 being a prime power. In this note we establish rk(C4) ≥ k2 + 2 for k being an odd prime power. ( Journal of Combinatorial Theory, Series B 79, 172–176 (2000))
منابع مشابه
New lower bounds for two multicolor classical Ramsey numbers
We present an algorithm to find lower bounds for multicolor classical Ramsey numbers by using 2-normalized cyclic graphs of prime order, and use it to obtain new lower bounds for two multicolor classical Ramsey numbers: R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.
متن کاملConstructive Lower Bounds on Classical Multicolor Ramsey Numbers
This paper studies lower bounds for classical multicolor Ramsey numbers, first by giving a short overview of past results, and then by presenting several general constructions establishing new lower bounds for many diagonal and off-diagonal multicolor Ramsey numbers. In particular, we improve several lower bounds for Rk(4) and Rk(5) for some small k, including 415 ≤ R3(5), 634 ≤ R4(4), 2721 ≤ R...
متن کاملConstructive lower bounds for Ramsey numbers from linear graphs
Giraud (1968) demonstrated a process for constructing cyclic Ramsey graph colourings, starting from a known cyclic ‘prototype’ colouring, adding edges of a single new colour, and producing a larger cyclic pattern. This paper describes an extension of that construction which allows any number of new colours to be introduced simultaneously, by using two multicolour prototypes, each of which is a ...
متن کاملSymmetric Sum-Free Partitions and Lower Bounds for Schur Numbers
We give new lower bounds for the Schur numbers S(6) and S(7). This will imply new lower bounds for the Multicolor Ramsey Numbers R6(3) and R7(3). We also make several observations concerning symmetric sumfree partitions into 5 sets.
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 79 شماره
صفحات -
تاریخ انتشار 2000