Rate-Distortion for Ranking with Incomplete Information
نویسندگان
چکیده
We study the rate-distortion relationship in the set of permutations endowed with the Kendall τ-metric and the Chebyshev metric. Our study is motivated by the application of permutation rate-distortion to the average-case and worst-case analysis of algorithms for ranking with incomplete information and approximate sorting algorithms. For the Kendall τ-metric we provide bounds for small, medium, and large distortion regimes, while for the Chebyshev metric we present bounds that are valid for all distortions and are especially accurate for small distortions. In addition, for the Chebyshev metric, we provide a construction for covering codes.
منابع مشابه
INCOMPLETE INTERVAL-VALUED HESITANT FUZZY PREFERENCE RELATIONS IN DECISION MAKING
In this article, we propose a method to deal with incomplete interval-valuedhesitant fuzzy preference relations. For this purpose, an additivetransitivity inspired technique for interval-valued hesitant fuzzypreference relations is formulated which assists in estimating missingpreferences. First of all, we introduce a condition for decision makersproviding incomplete information. Decision maker...
متن کاملStrategic Evaluation of Sustainable Projects based on Hybrid Group Decision Analysis with Incomplete Information
– Sustainable evaluation of construction projects in strategy-focused condition is the main issue for municipalities to appropriately improve public sector services. In this respect, the group decision-making methods could help experts to select suitable sustainable projects and to schedule them regarding their ranking results. Therefore, the objective of this study is to present a hybrid group...
متن کاملA New Extended Analytical Hierarchy Process Technique with Incomplete Interval-valued Information for Risk Assessment in IT Outsourcing
Information technology (IT) outsourcing has been recognized as a new methodology in many organizations. Yet making an appropriate decision with regard to selection and use of these methodologies may impose uncertainties and risks. Estimating the occurrence probability of risks and their impacts organizations goals may reduce their threats. In this study, an extended analytical hierarchical proc...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملMulti-Document Summarization Using Graph-Based Iterative Ranking Algorithms and Information Theoretical Distortion Measures
Text summarization is an important field in the area of natural language processing and text mining. This paper proposes an extraction-based model which uses graphbased and information theoretic concepts for multidocument summarization. Our method constructs a directed weighted graph from the original text by adding a vertex for each sentence, and compute a weighted edge between sentences which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1401.3093 شماره
صفحات -
تاریخ انتشار 2014