Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice

نویسندگان

  • Junghe Hur
  • Ki-Hong Jung
  • Choon-Hwan Lee
  • Gynheung An
چکیده

We isolated a rice T-DNA tagging line, in which T-DNA was inserted into the sixth intron of OsP5CS2. This gene encodes for a protein that is highly homologous to 1-pyrroline-5-carboxylate synthetase (P5CS), a proline biosynthesis enzyme. The T-DNA contained the promoterless gus gene, allowing generation of a gene fusion between OsP5CS2 and gus. Therefore, the expression pattern of OsP5CS2 could be easily monitored by in situ GUS assay. At the seedling stage, the transcript level was low. However, gene expression was preferentially induced in the dividing zone of the roots by salt, cold, or ABA treatments. In mature spikelets, the gene was expressed mainly in stamens. RT-PCR analyses confirmed the results from the GUS assay. OsP5CS2 transcript was present in reproductive organs, especially the stamens. In seedling roots, transcript levels were increased by treatment with 250 mM NaCl, 4 ◦C cold stress, or 0.5 M ABA. Our OsP5CS2 knockout plants were more sensitive to salt and cold stresses than were the wild-type controls. Root and shoot growth in the knockout seedlings were severely retarded when plants were exposed to 250 mM NaCl. Cold treatment for more than 12 h also caused growth retardation in those seedlings. Therefore, our results indicate that the OsP5CS2 gene is necessary for plant tolerance to salt and cold stresses. © 2004 Elsevier Ireland Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.

Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in eukaryotic organisms. However, little is known about the role of MAPKs in modulating the interaction of defense pathways activated by biotic and abiotic factors. In this study, we have isolated and functionally characterized a stress-responsive MAPK gene (OsMAPK5) from rice. OsMAPK5 is a sin...

متن کامل

OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.)

OsMSR2 is a novel calmodulin-like gene in rice. Previous study has been demonstrated that OsMSR2 was a cold, drought and heat-inducible gene. However, the role of OsMSR2 in rice stress response is still unclear. To reveal the function of OsMSR2 involved in stress response, the expression pattern and effects of overexpression of OsMSR2 on salt stress were analyzed in rice. Quantitative real-time...

متن کامل

Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.)

Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq ...

متن کامل

شناسایی رونوشت‌های با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP

      Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived F...

متن کامل

Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis

Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004