A note on unimodular eigenvalues for palindromic eigenvalue problems

نویسندگان

  • Chun-Yueh Chiang
  • Eric King-Wah Chu
  • Peter Chang-Yi Weng
چکیده

We consider the occurrence of unimodular eigenvalues for palindromic eigenvalue problems associated with the matrix polynomial Pn(λ) ≡ ∑n i=0Aiλ i where Ai = An−i with M∗ ≡ M , M or PMP (P 2 = I). From the properties of palindromic eigenvalues and their characteristic polynomials, we show that eigenvalues are not generically excluded from the unit circle, thus occurring quite often, except for the complex transpose case when Pn is complex and M∗ ≡ M . This behaviour is observed in numerical simulations and has important implications on several applications such as the vibration of fast trains, surface acoustic wave filters, stability of time-delay systems and crack modelling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Palindromic Generalized Eigenvalue Problem A∗x = λAx: Numerical Solution and Applications

In this paper, we propose the palindromic doubling algorithm (PDA) for the palindromic generalized eigenvalue problem (PGEP) A∗x = λAx. We establish a complete convergence theory of the PDA for PGEPs without unimodular eigenvalues, or with unimodular eigenvalues of partial multiplicities two (one or two for eigenvalue 1). Some important applications from the vibration analysis and the optimal c...

متن کامل

Perturbation of Palindromic Eigenvalue Problems

We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.

متن کامل

Perturbation Results Related to Palindromic Eigenvalue Problems

We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P(λ)= λ2 A?1 + λA0 + A1 with A0, A1 ∈ C n×n and A?0 = A0 (where ?= T or H ). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed. 2000 Mathematics subject classification: primar...

متن کامل

Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form

We present structure-preserving numerical methods for the eigenvalue problem of complex palindromic pencils. Such problems arise in control theory, as well as from palindromic linearizations of higher degree palindromic matrix polynomials. A key ingredient of these methods is the development of an appropriate condensed form — the anti-triangular Schur form. Ill-conditioned problems with eigenva...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2012