Global Source-Aware Statistical Post-Editing for General MT: Sentence Specification via Pseudo-Feedback
نویسندگان
چکیده
The automatic post-editing (APE), which can correct the translation errors, is an effective approach to improving machine translation (MT) output quality. This paper proposes a global source-aware SPE model to improve the MT translation quality leveraging pseudo-feedback to achieve the sentence specification. For a given source sentence, some similar sentences are retrieved from a translation memory (TM) as the post-editing data. The data is a set of tri-lingual parallel texts which contain the source sentences and their raw machine translations and their gold references (human translations). The alignments between the raw translation and the references are used to re-examine effectiveness of post-editing phrase pairs of the source-independent SPE model. The selected phrase pairs are applied to polish the raw translations. The experimental results show that our method brings the improvement of 3.78 BLEU score to the original outputs of Google translation, outperforms a source-independent SPE model by 1.09 BLEU points and a local source-aware SPE model by 1.02 BLEU points.
منابع مشابه
Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Translation
We evaluated the productivity increase of statistical MT post-editing as compared to traditional translation in a two-day test involving twelve participants translating from English to French, Italian, German, and Spanish. The test setup followed an empirical methodology. A random subset of the entire new content produced in our company during a given year was translated with statistical MT eng...
متن کاملPredicting Machine Translation Adequacy
As Machine Translation (MT) becomes more popular among end-users, an increasingly relevant issue is that of estimating the quality of automatic translations for a particular task. The main application for such quality estimates has been selecting good enough translations for human post-editing. The endusers, in this case, are fluent speakers of both source and target languages and the quality e...
متن کاملMulti-source Neural Automatic Post-Editing: FBK's participation in the WMT 2017 APE shared task
Previous phrase-based approaches to Automatic Post-editing (APE) have shown that the dependency of MT errors from the source sentence can be exploited by jointly learning from source and target information. By integrating this notion in a neural approach to the problem, we present the multi-source neural machine translation (NMT) system submitted by FBK to the WMT 2017 APE shared task. Our syst...
متن کاملCan Automatic Post-Editing Make MT More Meaningful?
Automatic post-editors (APEs) enable the re-use of black box machine translation (MT) systems for a variety of tasks where different aspects of translation are important. In this paper, we describe APEs that target adequacy errors, a critical problem for tasks such as cross-lingual question-answering, and compare different approaches for post-editing: a rule-based system and a feedback approach...
متن کاملA Framework for Interactive and Automatic Refinement of Transfer-based Machine Translation
Most current Machine Translation (MT) systems do not improve with feedback from post-editors beyond the addition of corrected translations to parallel training data (for statistical and example-base MT) or to a memory database. Rule based systems to date improve only via manual debugging. In contrast, we propose a largely automated method for capturing more information from human post-editors, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 32 شماره
صفحات -
تاریخ انتشار 2016