Notes on Cells of Harish-chandra Modules and Special Unipotent Representations

نویسنده

  • PETER E. TRAPA
چکیده

Let GR denote the real points of a connected complex reductive algebraic group defined over R). (For the basic results on cells below, this class of groups is unnecessarily restrictive. But we shall need the assumption when we discuss unipotent representations below.) Let gR denote the Lie algebra of GR and write g for the complexification of gR. Let KR denote a maximal compact subgroup in G, and write K for its complexification. Let HCλ be the category of Harish-Chandra modules with infinitesimal character λ. Cells are designed to capture some of the information of tensoring Harish-Chandra modules with finite-dimensional modules. More precisely, given two objection X and Y in HCλ, write X > Y if there exists a finite-dimensional representation of G appearing the tensor algebra T (g) such that Y appears a subquotient of X⊗F . Write X ∼ Y if both X > Y and Y > X . Then ∼ is an equivalence relation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Sheaves on Flag Varieties: sl(2,C) Calculations

These are notes from a series of talks given in the representation theory student seminar at the University of Utah in November 2016. These talks explored the twists that arise in the geometry of the Borel Weil theorem and Beilinson and Bernstein’s equivalence of categories. Throughout the talks, we assume g = sl(2,C). We discuss the Serre’s twisted sheaves of sections of line bundles, sheaves ...

متن کامل

Representations of Complex Semi-simple Lie Groups and Lie Algebras

This article is an exposition of the 1967 paper by Parthasarathy, Ranga Rao, and Varadarajan, on irreducible admissible Harish-Chandra modules over complex semisimple Lie groups and Lie algebras. It was written in Winter 2012 to be part of a special collection organized to mark 10 years and 25 volumes of the series Texts and Readings in Mathematics (TRIM). Each article in this collection is int...

متن کامل

GENERALIZED HARISH-CHANDRA MODULES WITH GENERIC MINIMAL k-TYPE

We make a first step towards a classification of simple generalized Harish-Chandra modules which are not Harish-Chandra modules or weight modules of finite type. For an arbitrary algebraic reductive pair of complex Lie algebras (g, k), we construct, via cohomological induction, the fundamental series F ·(p, E) of generalized Harish-Chandra modules. We then use F ·(p, E) to characterize any simp...

متن کامل

Harish-chandra Modules for Quantum Symmetric Pairs

Let U denote the quantized enveloping algebra associated to a semisimple Lie algebra. This paper studies Harish-Chandra modules for the recently constructed quantum symmetric pairs U ,B in the maximally split case. Finite-dimensional U -modules are shown to be Harish-Chandra as well as the B-unitary socle of an arbitrary module. A classification of finite-dimensional spherical modules analogous...

متن کامل

Hecke Algebras and Representations of Finite Reductive Groups

Let F be a eld and G a nite group. Choosing a suitable Mackey system of subfactors of G one can subdivide the irreducible FG-modules into series labelled by semisimple Harish-Chandra vertices and sources. This reduces the classiication problem for irreducible FG-modules partially to the problem of nding the irreducible representations of certain endomorphism rings of Harish-Chandra induced modu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007