Insulin-induced translocation of facilitative glucose transporters in fetal/neonatal rat skeletal muscle.
نویسندگان
چکیده
We examined the effect of insulin on fetal/neonatal rat skeletal muscle GLUT-1 and GLUT-4 concentrations and subcellular distribution by employing immunohistochemical analysis and subcellular fractionation followed by Western blot analysis. We observed that insulin did not alter total GLUT-1 or GLUT-4 concentrations or the GLUT-1 subcellular distribution in fetal/neonatal or adult skeletal muscle in 60 min. The basal and insulin-induced changes in subcellular distribution of GLUT-4 were different between the fetal/neonatal and adult skeletal muscle. Under basal conditions, sarcolemma-associated GLUT-4 was higher in the newborn compared with the adult, translating into a higher glucose transport. In contrast, insulin-induced translocation of GLUT-4 to the sarcolemma- and insulin-induced glucose transport was lower in the newborn compared with the adult. This age-related change results in enhanced basal glucose transport to fuel myocytic proliferation and differentiation while relatively curbing the insulin-dependent glucose transport in the newborn.
منابع مشابه
Polymorphic human insulin-responsive glucose-transporter gene on chromosome 17p13.
Glucose uptake by heart, skeletal muscle, and adipose tissue is acutely regulated by insulin, which stimulates facilitative glucose transport, at least in part, by promoting the translocation of transporters from an intracellular pool to the plasma membrane. cDNAs encoding the major human insulin-responsive glucose transporter have been isolated and indicate that the insulin-responsive glucose ...
متن کاملRegulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exo...
متن کاملEffects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.
GENBANK/dy examines the mechanisms of glucocorticoid-induced insulin resistance in rat soleus muscle. Glucocorticoid excess was induced by administration of dexamethasone to rats for 5 days. Dexamethasone decreased the sensitivity of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation, glycogen synthesis and glucose oxidation to insulin. The total content of GLUT4 glucose transporters w...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملSimultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels, Insulin Resistance, Caspase 3 And 7 As Indicators of Skeletal Muscle Apoptosis in STZ-Induced Male Diabetic Rats
Background: The aim of the present study was to investigate the simultaneous effect of resistance training and stem cell injection on the levels of some indicators of skeletal muscle apoptosis in STZ-induced diabetic male rats. Methods: In this study, 30 rats were randomly divided into 5 groups. Rats in the diabetic group and the diabetic group + stem cell injection had a total of 17 sessions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2003