Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly.

نویسندگان

  • Hanqian Mao
  • Louis-Jan Pilaz
  • John J McMahon
  • Christelle Golzio
  • Danwei Wu
  • Lei Shi
  • Nicholas Katsanis
  • Debra L Silver
چکیده

The cerebral cortex is built during embryonic neurogenesis, a period when excitatory neurons are generated from progenitors. Defects in neurogenesis can cause acute neurodevelopmental disorders, such as microcephaly (reduced brain size). Altered dosage of the 1q21.1 locus has been implicated in the etiology of neurodevelopmental phenotypes; however, the role of 1q21.1 genes in neurogenesis has remained elusive. Here, we show that haploinsufficiency for Rbm8a, an exon junction complex (EJC) component within 1q21.1, causes severe microcephaly and defective neurogenesis in the mouse. At the onset of neurogenesis, Rbm8a regulates radial glia proliferation and prevents premature neuronal differentiation. Reduced Rbm8a levels result in subsequent apoptosis of neurons, and to a lesser extent, radial glia. Hence, compared to control, Rbm8a-haploinsufficient brains have fewer progenitors and neurons, resulting in defective cortical lamination. To determine whether reciprocal dosage change of Rbm8a alters embryonic neurogenesis, we overexpressed human RBM8A in two animal models. Using in utero electroporation of mouse neocortices as well as zebrafish models, we find RBM8A overexpression does not significantly perturb progenitor number or head size. Our findings demonstrate that Rbm8a is an essential neurogenesis regulator, and add to a growing literature highlighting roles for EJC components in cortical development and neurodevelopmental pathology. Our results indicate that disruption of RBM8A may contribute to neurodevelopmental phenotypes associated with proximal 1q21.1 microdeletions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly

The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysf...

متن کامل

Neurobiology of Disease Rbm8a Haploinsufficiency Disrupts Embryonic Cortical Development Resulting in Microcephaly

Hanqian Mao,1 X Louis-Jan Pilaz,1 John J. McMahon,1 X Christelle Golzio,2,3 X Danwei Wu,1 Lei Shi,1 Nicholas Katsanis,2,4 and X Debra L. Silver1,4,5,6 1Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, 2Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, 3Department of Psychiatry and Beha...

متن کامل

Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage.

Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse...

متن کامل

Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1

The proneural factor Ascl1 controls multiple steps of neurogenesis in the embryonic brain, including progenitor division and neuronal migration. Here we show that Cenpj, also known as CPAP, a microcephaly gene, is a transcriptional target of Ascl1 in the embryonic cerebral cortex. We have characterized the role of Cenpj during cortical development by in utero electroporation knockdown and found...

متن کامل

Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development.

GTF2I and GTF2IRD1 encoding the multifunctional transcription factors TFII-I and BEN are clustered at the 7q11.23 region hemizygously deleted in Williams-Beuren syndrome (WBS), a complex multisystemic neurodevelopmental disorder. Although the biochemical properties of TFII-I family transcription factors have been studied in depth, little is known about the specialized contributions of these fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 18  شماره 

صفحات  -

تاریخ انتشار 2015