Patterned PLG substrates for localized DNA delivery and directed neurite extension.

نویسندگان

  • Tiffany Houchin-Ray
  • Laura A Swift
  • Jae-Hyung Jang
  • Lonnie D Shea
چکیده

Tissue engineering strategies that enable nerve regeneration will require methods that can promote and direct neurite extension across the lesion. In this report, we investigate an in vitro combinatorial approach to directed neurite outgrowth using gene delivery from topographically patterned substrates, which can induce expression of neurotrophic factors to promote neurite extension and direct the extending neurites. Poly(lactide-co-glycolide) (PLG), which has been used to fabricate conduits or bridges for regeneration, was compression molded to create channels with 100, 150, and 250 microm widths. DNA complexes were immobilized to the PLG, and cells cultured on the substrate were transfected with efficiencies dependent on channel width and DNA amount. A co-culture model consisting of primary neurons and accessory cells was employed to investigate neurite outgrowth within the channels. Localized secretion of nerve growth factor (NGF) by the accessory cells promoted neuron survival and neurite extension. Neurons cultured in channels with NGF expression exhibited longer primary neurites than in the absence of channels. Neurons cultured in smaller width PLG microchannels exhibited a greater degree of directionality and less secondary sprouting than larger channels. Finally, surface immobilization allowed for the delivery of distinct plasmids from each channel, which may enable channels to be tailored for specific nerve tracts. This approach demonstrates the ability to combine gene delivery with physical guidance, and can be tailored to target specific axonal populations with varying neurotrophic factor requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth.

OBJECTIVE Detonation nanodiamond monolayer coatings are exceptionally biocompatible substrates for in vitro cell culture. However, the ability of nanodiamond coatings of different origin, size, surface chemistry and morphology to promote neuronal adhesion, and the ability to pattern neurons with nanodiamonds have yet to be investigated. APPROACH Various nanodiamond coatings of different type ...

متن کامل

Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation.

One of the key morphological changes associated with the nerve growth factor (NGF)-induced differentiation of rat adrenal pheochromocytoma (PC-12) cells is the growth of axon-like processes called neurites. A growing body of evidence suggests that this process may be dependent upon plasmin, a serine protease generated from plasminogen (Plg) by either urokinase Plg activator (u-PA) or tissue Plg...

متن کامل

Plasminogen Deficiency Causes Reduced Corticospinal Axonal Plasticity and Functional Recovery after Stroke in Mice

Tissue plasminogen activator (tPA) has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg) into plasmin. In this study, using plasminogen knockout (Plg-/-) mice and their Plg-native littermates (Plg+/+), we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/gr...

متن کامل

Substrate-mediated delivery from self-assembled monolayers: effect of surface ionization, hydrophilicity, and patterning.

Gene transfer has many potential applications in basic and applied sciences. In vitro, DNA delivery can be enhanced by increasing the concentration of DNA in the cellular microenvironment through immobilization of DNA to a substrate that supports cell adhesion. Substrate-mediated delivery describes the immobilization of DNA, complexed with cationic lipids or polymers, to a biomaterial or substr...

متن کامل

High-Content Neurite Development Study Using Optically Patterned Substrates

The study of neurite guidance in vitro relies on the ability to reproduce the distribution of attractive and repulsive guidance molecules normally expressed in vivo. The identification of subtle variations in the neurite response to changes in the spatial distribution of extracellular molecules can be achieved by monitoring the behavior of cells on protein gradients. To do this, automated high-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 28 16  شماره 

صفحات  -

تاریخ انتشار 2007