Integer fast Fourier transform

نویسندگان

  • Soontorn Oraintara
  • Ying-Jui Chen
  • Truong Q. Nguyen
چکیده

In this paper, a concept of integer fast Fourier transform (IntFFT) for approximating the discrete Fourier transform is introduced. Unlike the fixed-point fast Fourier transform (FxpFFT), the new transform has the properties that it is an integer-to-integer mapping, is power adaptable and is reversible. The lifting scheme is used to approximate complex multiplications appearing in the FFT lattice structures where the dynamic range of the lifting coefficients can be controlled by proper choices of lifting factorizations. Split-radix FFT is used to illustrate the approach for the case of 2 -point FFT, in which case, an upper bound of the minimal dynamic range of the internal nodes, which is required by the reversibility of the transform, is presented and confirmed by a simulation. The transform can be implemented by using only bit shifts and additions but no multiplication. A method for minimizing the number of additions required is presented. While preserving the reversibility, the IntFFT is shown experimentally to yield the same accuracy as the FxpFFT when their coefficients are quantized to a certain number of bits. Complexity of the IntFFT is shown to be much lower than that of the FxpFFT in terms of the numbers of additions and shifts. Finally, they are applied to noise reduction applications, where the IntFFT provides significantly improvement over the FxpFFT at low power and maintains similar results at high power.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer fast Fourier transform (INTFFT)

In this paper, a concept of integer fast Fourier transform (IntFFT) for approximating the discrete Fourier transform is introduced. Unlike the fixed-point fast Fourier transform (FxpFFT), the new transform has properties that it is an integer-to-integer mapping, power adaptable and also reversible. Lifting scheme is used to approximate complex multiplications appearing in the FFT lattice struct...

متن کامل

Fast Fourier Transform and its applications to integer knapsack problems

In this paper we suggest a new efficient technique for solving integer knapsack problems. Our algorithms can be seen as application of Fast Fourier Transform to generating functions of integer polytopes. Using this approach, it is possible to count the number of boolean solutions of a single n-dimensional Diophantine equation 〈a, x〉 = b in O(‖a‖1 ln ‖a1‖ ln n) operations. Another application ex...

متن کامل

Improved Integer Transforms for Lossless Audio Coding

Lifting scheme based integer transforms are very powerful tools to construct lossless coding schemes. These transforms such as the Integer Fast Fourier Transform (IntFFT) and the Integer Modified Discrete Cosine Transform (IntMDCT) are integer approximations of the original floatingpoint transforms, and hence there is an approximation error in the transform domain. This paper will propose struc...

متن کامل

Improved Integer Transforms Using Multi-dimensional Lifting

Recently lifting-based integer transforms have received much attention, especially in the area of lossless audio and image coding. The usual approach is to apply the lifting scheme to each Givens rotation. Especially in the case of long transform sizes in audio coding applications, this leads to a considerable approximation error in the frequency domain. This paper presents a multidimensional l...

متن کامل

Some Historical Notes on Number Theoretic Transform

Modulo arithmetic modulo a prime integer have many interesting properties. Such properties are found in standard books on number theory. Some properties are especially of interest to the signal processing application. It was observed analogy exists between some of them and that cyclic convolution of two sequences modulo a prime integer of two sequences could be computed in integer domain as can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2002