Enumerating 2-cell Imbeddings of Connected Graphs

نویسندگان

  • BRUCE P. MULL
  • ROBERT G. RIEPER
  • ARTHUR T. WHITE
  • Thomas H. Brylawski
چکیده

A systematic approach is developed for enumerating congruence classes of 2-cell imbeddings of connected graphs on closed orientable 2-manifolds. The method is applied to the wheel graphs and to the complete graphs. Congruence class genus polynomials and congruence class imbedding polynomials are introduced, to summarize important information refining the enumeration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Imbeddings of Finite Projective Planes

We use index-one voltage graph imbeddings of Cayley graphs (Cayley maps) for the groups Zn2+n + v where n is a prime power, to depict the finite projective planes PG(2, n). Subject to the condition that Zn2+n + i act regularly not only on the images of the points and of the lines of PG(2, n), but also on each orbit of the region set for the imbedding, the imbeddings constructed have maximum eff...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Enumerating Spanning and Connected Subsets in Graphs and Matroids

We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasi-polynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected subgraphs of a given graph can be generated in incremental polynomial time.

متن کامل

ENUMERATING SPANNING AND CONNECTED SUBSETS IN GRAPHS AND MATROIDS ̃y

We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasi-polynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected subgraphs of a given graph can be generated in incremental polynomial time.

متن کامل

Enumerating Spanning and Connected Subsets in Graphs and Matroids

We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasipolynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected edge subsets of a given graph can be generated in incremental polynomial time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010