Approximate dynamic programming with a fuzzy parameterization
نویسندگان
چکیده
Dynamic programming (DP) is a powerful paradigm for general, nonlinear optimal control. Computing exact DP solutions is in general only possible when the process states and the control actions take values in a small discrete set. In practice, it is necessary to approximate the solutions. Therefore, we propose an algorithm for approximate DP that relies on a fuzzy partition of the state space, and on a discretization of the action space. This fuzzy Q-iteration algorithm works for deterministic processes, under the discounted return criterion. We prove that fuzzy Q-iteration asymptotically converges to a solution that lies within a bound of the optimal solution. A bound on the suboptimality of the solution obtained in a finite number of iterations is also derived. Under continuity assumptions on the dynamics and on the reward function, we show that fuzzy Q-iteration is consistent, i.e., that it asymptotically obtains the optimal solution as the approximation accuracy increases. These properties hold both when the parameters of the approximator are updated in a synchronous fashion, and when they are updated asynchronously. The asynchronous algorithm is proven to converge at least as fast as the synchronous one. The performance of fuzzy Q-iteration is illustrated in a two-link manipulator control problem.
منابع مشابه
OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT
Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by many researchers. Considering the quantity discount in purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In this paper, stochastic dyn...
متن کاملDual Heuristic Programming for Fuzzy Control
Overview material for the Special Session (Tuning Fuzzy Controllers Using Adaptive Critic Based Approximate Dynamic Programming) is provided. The Dual Heuristic Programming (DHP) method of Approximate Dynamic Programming is described and used to the design a fuzzy control system. DHP and related techniques have been developed in the neurocontrol context but can be equally productive when used w...
متن کاملMeasuring a Dynamic Efficiency Based on MONLP Model under DEA Control
Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. Standard DEA models are quite limited models, in the sense that they do not consider a DMU at different times. To resolve this problem, DEA models with dynamic structures have been proposed.In a recent pape...
متن کاملAdaptive Critic Based Approximate Dynamic Programming for Tuning Fuzzy Controllers
This work was supported by the National Science Foundation under grant ECS-9904378. Abstract: In this paper we show the applicability of the Dual Heuristic Programming (DHP) method of Approximate Dynamic Programming to parameter tuning of a fuzzy control system. DHP and related techniques have been developed in the neurocontrol context but can be equally productive when used with fuzzy controll...
متن کاملThe optimal energy carriers substitutes in thermal power plants:A fuzzy linear programming model
In this paper, a dynamic optimization approach for optimal choice of energy carriers in thermal power plants is proposed that analyzes the substitution of energy carriers in short-term planning of a power plant.The model is based on the linear programming method with the objective of minimizing costs under constraints of resource availability, energy balances, environmental regulations and elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 46 شماره
صفحات -
تاریخ انتشار 2010